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ABSTRACT 

An ultrasonic method has been used in experimentally determining the 
transport properties of gases at elevated temperatures. Temperature, 
rotational collision numbers, and vibrational relaxation times have also been 
determined from the ultrasonic measurements. An ultrasonic (~1 to 3 MHz) 
pulse method has been used to measure both sound velocity and sound absorp- 
tion in argon, helium, nitrogen, 
range of 300- 1300OK. 

oxygen and carbon dioxide in the temperature 
Preliminary measurements in the temperature range 

of 7000-17, OOOOK have been obtained in argon and nitrogen. All of the mea- 
surements were obtained at a pressure of one atmosphere. Temperature and 
transport properties of argon and helium have been determined from the 
ultrasonic measurements. Vibrational relaxation times of carbon dioxide 
have also been determined from the sound absorption measurements from 
300 to 1300OK. Rotational collision numbers have been obtained as a func- 
tion of temperature in oxygen and nitrogen and are in reasonable agreement 
with the theoretical values given by Parker. This agreement has established 
that the transport properties of nondissociated diatomic molecules (homo- 
nuclear) can also be determined from ultrasonic measurements. At elevated 
temperatures the effects due to electrons, ions, and radiation must also be 
considered. 
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INTRODUCTION 

The transport properties of gases at elevated temperatures are re- 
quired in predicting heat transfer through boundary layers, in problems 
associated with astrophysics, in basic research, etc. Although there have 
been recent improvements in the theoretical predictions of.transport prop- 
erties, there have not been conclusive experimental determinations at tem- 
peratures above about 2000OK. 

There are several techniques which have been used in determining 
transport properties of gases at elevated temperatures. Amdur et al (ref. 1 
combined statistical mechanics and kinetic theory with the experimental de- 
termination of molecular interactions, as obtained from the scattering of high 
velocity molecular beams in gases, to calculate transport properties. 
Wienecke (ref. 2) injected carbon dust into a high current dc arc and optically 
determined the flow velocity gradient, which in conjunction with temperature 
and density, can provide a determination of the viscosity of gases at elevated 
temperatures. Maecker (ref. 3) measured the field strength and the radial 
temperature distribution in a cascade arc and thus determined the thermal 
conductivity of gases at elevated temperatures. Several investigators (ref. 
4-13) have measured the transient surface temperature rise of heat transfer 
gauges mounted in shock tubes to determine transport properties of gases. 
Recently an optical method was used in determining thermal conductivity from 
measured end wall density gradients (ref. 14, 15). 

Although the use of sound velocity in gas temperature determinations 
had been suggested over 90 years ago and utilized over at least the last 40 

. . years, there has not been any attempt to make use of sound absorption to ob- 
tain gas transport properties (viscosity, thermal conductivity, and diffusion). 
This is readily understood since reliable sound absorption measurements in 
gases were not obtained until about 20 years ago. Experimental measure- 
ments of sound absorption in monatomic gases and binary mixtures of mon- 
atomic gases are now in excellent agreement with theoretical predictions 
based upon kinetic theory. Several years ago, E. Bauer (ref. 16) suggested 
the use of ultrasonics in the determination of transport properties of gases 
at elevated temperature. 

In the case of a monatomic gas without ionization the sound absorption 
is primarily due to the sum of the transport properties, viscosity and ther- 
mal conductivity. For binary mixtures the diffusion coefficient must also be 
added in order to account for the sound absorption. For polyatomic gases, 
the effects of the internal states must be considered (vibration, rotation, dis- 
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sociation). At elevated temperatures the effects due to electrons, ions and 
radiation must also be considered. Although the problem of determining 
transport properties from ultrasonic measurements appears difficult at first 
glance, it can be shown that, in many cases, only two or three loss mech- 
anism may account for the measured sound absorption. For example, as 
indicated above, for monatomic gases without ionization, the viscosity and 
thermal conductivity can account for the measured sound absorption. Fur- 
thermore, for this case one can express the sound absorption as a function of 
either the viscosity or thermal conductivity alone since the viscosity bears a 
known relation to the thermal conductivity. In the case of binary mixtures of 
monatomic gases the additional measured sound absorption can be attributed 
solely to the diffusion coefficient. Although the sound absorption of binary 
mixtures of monatomic species is due to three terms, viscosity, thermal 
conductivity and diffusion, a sequence of appropriate acoustic experiments 
will allow the determination of each of these transport properties, simply by 
measuring each monatomic gas separately and then measuring the sound ab- 
sorption of the mixture. Similar arguments are presented later for poly- 
atomic gases in which the effect of internal states must be evaluated. 

The present study describes an ultrasonic method which has been used 
in experimentally determining the transport properties of gases at elevated 
temperatures. Temperature, rotational collision numbers, and vibrational 
relaxation times have also been determined from the ultrasonic measurements 
An ultrasonic (-1 to 3 MHz) pulse method has been used to measure both 
sound velocity and sound absorption in argon, helium, nitrogen, oxygen and 
carbon dioxide in the temperature range of 300- 1300OK. Preliminary mea- 
surements in the temperature range of 7000-17, OOOOK have been obtained only 
in argon and nitrogen. All of the measurements were obtained at a pressure 
of one atmosphere. Temperature and transport properties of argon and he- 
lium have been determined ‘from the ultrasonic measurements. Vibrational 
relaxation times of carbon dioxide have also been determined from the sound 
absorption measurements from 300 to 1300OK. Rotational collision numbers 
have been obtained as a function of temperature in oxygen and nitrogen and 
are in reasonable agreement with the theoretical values given by Parker (ref. 
17 ). This agreement has established that the transport properties of nondis- 
sociated diatdmic molecules (homonuclear) can be determined from ultra- 
sonic measurements. At temperatures at which ionization occurs the effect 
of electrons, ions and radiation must be considered. 

The authors wish to thank consultants Prof. I. Amdur of MIT and Prof. E. 
Mason of the Univ. of Maryland for their many helpful discussions. Additional 
useful discussions were held with Prof K. Herzfeld of the Catholic Univ. of 
America, Drs. J. Yos and W. Bade of the Avco Corp. We would also like to 
acknolwedge the following personnel from Parametrics, Inc., who carried out 
the experimental measurements: C. Barber, B. Douglass, M. Wood, and 
S. Uva. 
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METHOD OF MEASUREMENT 

Introduction 

.To determine the transport properties of high temperature gases ultra- 
sonically, one basically measures two acoustic properties of the gas: sound 
velocity and sound absorption. Sound velocity can be determined by measur- 
ing the transit time required for the sound wave to traverse a known path 
length. Sound absorption can be determined by measuring amplitude as‘a 
function of path length. 

To accomplish these two measurements at temperatures above the 
melting point of the ultrasonic probes, these probes are inserted into the gas 
only momentarily (-0. 1 set). The transit time and amplitude of an ultra- 
sonic pulse which traverses the gap between the probes is measured simul- 
taneously. This procedure is repeated for different gaps. The sound velocity 
is readily calculated, and the gas temperature is then obtained from the theo- 
retical temperature-sound velocity relation. Absorption is determined by the 
rate of change of amplitude with respect to gap length. 

A simplified block diagram of the equipment is shown in figure 1. The 
circuits to the left of the gas path generate a high-voltage pulsed oscillation 
which is converted to an ultrasonic pulse by a piezoelectric (usually lead zir- 
conate titanate) transducer cut to resonate at -1 to 3 MHz. The sound is 
transmitted through a 6 in. long, l/2 in. diameter fused silica buffer rod, 
across the gas path, and then to a similar rod, at the far end of which is 
bonded a piezoelectric receiving crystal which converts the sound back into 
an electrical signal. The signal, after amplification and filtering, is dis- 
played on an oscilloscope, the sweep of which can be delayed with respect to 
the initiation pulse, permitting the received signal to be examined on an ex- 
panded time scale. A Land camera is used in conjunction with an external 
trigger to photograph the received signals. 

The fused silica rods protect the transducers from exposure to damag- 
ing temperatures and also provide an acoustic delay so that the received sig- 
nal is clearly separated from the termination of the transmitted pulse. 

In order to clarify certain features of the present experiment, the ap- 
paratus and procedures are discussed below in some detail. To distinguish 
the present differential path measurements from earlier fixed path measure- 
ments, these earlier measurements are considered next. 

Fixed path. - Knowing the measured gas path, x, and the transit time, 
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t, an average sound velocity c = x/t can be computed. If the composition of 
the gas is known, 
T = c2 M/yR. 

then an average gas temperature, T, can also be computed, 
This average gas temperature, over a fixed gas path, was 

acoustically measured in a high temperature arc over thirty years ago by 
Suits (ref. 18) and more recently, in a plasma jet, by Carnevale et al (ref. 
19 ). Absorption has also been measured recently in a shock tube, using 

probes a fixed distance apart (ref. 20 ). 

The major shortcoming of fixed path sonic thermometry results from 
the presence of cooled boundary layers adjacent to the acoustic probes. This 
shortcoming is substantially avoided in a differential path system. 

Differential path. - Historically, differential or variable path acoustic 
systems were first used for interferometer type measurement of sound ve- 
locity and absorption in liquids and gases. Application of a differential path 
ultrasonic system to the study of gases at high temperature was first re- 
ported in 1963 (ref. 21 ). 

Principle 

Idealized test gas. - The principle of the differential path technique may 
be explained as follo:s. For illustrative purposes, consider argon as the 
test gas, at T = 7000. K. At this temperature, the sound velocity c = 1540 
m/set = 0.06 in. /psec. 

For the moment, assume the gas to be idealized to the extent that it is 
stationary and of uniform equilibrium temperature and density. An ultra- 
sonic pulse .is transmitted through this idealized test gas using the arrange- 
ment of figure 2. (The mechanical fixtures and gauges and electronic instru- 
mentation required to realistically conduct this experiment are described 
later; see figure’ 6, f 0 r example). Let the initial buffer rod separation be 
x0, and the initial received signal amplitude be A,; Now retract one of the 
buffer rods a distance Ax such that the gas path is increased to x1 = x0 + Ax. 
The transit time is increased by the amount At = Ax/c. The amplitude is re- 
duced by a Ax. Assume aAx = 3 db; i.e., Al/A, = 0.707. These changes in 
phase and amplitude are shown in figure 2 Continuing, further increase the 
gas path by another Ax. The transit time increases again by At and the am- 
plitude is reduced again by 3 db, i. e., AZ/A, = 0.5. 

Clearly, if this idealized argon experiment is continued, a plot of 
transit time (ordinate) vs. gas path (abscissa) yields a straight line of slo e 
l/c (figure 3). The slope is known from theory to be proportional to T -4, 

Also, a plot of In amplitude (ordinate) vs. gas path (abscissa) yields a 
straight line of slope = -a (figure 4). Note that the actual gas path x does not 
have to be measured; only the change in gas path is essential to the calcula- 
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tions. Similarly, the actual transit time, and amplitude, are not important, 
in *principle. Only their changes as a function of x enter into the calculation 
of temperature and transport properties, respectively. 

Test gas containing temperature Pradients, thermal boundary 
layers. - In practice, when the gas in the range 3000 to 15, OOOOK is momen- 
tarily contacted, a thermal boundary layer, of thickness 6, forms between 
the end of the buffer rod and the hot test gas. Now let the gas path change by 
a small amount dx = 0.001 to 0.010 in. To the extent that’ the test .gas is uni- 
form beyond and nearby the boundary layer, displacement of the buffer rod 
from x to x + dx produces negligible change in the boundary layer. Thus, 
6 (x) = const. if T(x) = const. and u(x) = const. , where u = gas flow veiocity. 
Furthermore, if T(x) = const., then the t vs. x and ln A vs. x plots are essen- 
tially straight lines. Conversely, a measure of the degree of gas uniformity 
is the straightness of the t vs. x and In A vs. x plots. 

In practice, the ac (inductively) heated or dc (arc) heated test gas is 
typically probed from the center to the edge. Generally, over a differential 
distance of about 0. 1 in. , the linearity of the phase and amplitude data is ade- 
quate for temperature and transport properties to be calculated. It is impor- 
tant to recognize that when there is a temperature gradient in the system, the 
temperature and absorption are measured over each increment inunediately 
in front of the boundary layer. Note that since both transit time and ampli- 
tude of the ultrasonic pulse are recorded simultaneously, no independent 
measurement of temperature is needed. That is to say, both temperature 
and transport properties are ultrasonically measured at the same time in the 
same incremental volume element of the test gas. 

Apparatus and Procedures 

Momentary contact. -In order to take advantage of the short transit 
time of the sound waves through the plasma (a few microseconds), the plasma 
is swept through the probes, or the probes are swept through the plasma. 
This avoids transit time corrections due to heating of the probes in the plasma 
and also extends the “life” of the probes, since ablation would occur within a 
few seconds if the probes remained in the plasma. For successive passes 
through the plasma during a given run, the probes are air cooled at least 10 
seconds between sweeps. 

In the earlier fixed path ultrasonic measurements using momentary 
contact in air plasmas, Carnevale (ref. 19 ) mounted the probes on a drill 
press spindle, manually sweeping them vertically through a horizontally dis- 
charging dc arc jet. In the present work, several other momentary contact 
probing systems were developed or evaluated, to be compatible with different 
high temperature sources. 

9 



Differential path measurements in plasmas were first conducted in in- 
ductively heated argon (ref. 21). Here, flow velocity was low, typically less 
than 1% of the sound velocity. The argon plasma exhausted vertically out of a 
fused silica tube (figure 5). Probes mounted on a hinged support were manu- 
ally swept through the plasma. More recently, pneumatically actuated 
pistons drive the acoustic probes into and out of the test gas (figure 6). Thus, 
the probes move in and out in a straight line. They are supported by linear 
bearings, which in turn are mounted on large structural sections. Trans - 
mitter and receiver are aligned using shimmed x-y stages. In other tests, 
the gas was swept through the probes. Momentary contact using a pulsed rf 
plasma has also been considered. 

In related work (ref. 22 ) using a shock tube as the high temperature 
source, the test gas is in momentary contact with fixed acoustic probes for a 
fraction of a millisecond. 

Continuous contact. - Although testing at the highest temperatures re- 
quires momentary contact, some testing of argon plasmas at T -7OOO’K was 
accomplished using water cooled probes in continuous contact with the gas. 
Metallic (aluminum) and nonmetallic (fused silica) buffer rods were found 
satisfactory. It is possible that refractory metal probes could survive de- 
spite continuous contact with high temperature monatomic gases, and certain 
polyatomic gases, e. g. , nitrogen, provided the gas pressure was not too 
high. Such probes could be allowed to heat up to about 2000 to 3000°K at one 
end, thereby reducing the boundary layer to some degree. Molybdenum has 
been used in this way in studies of molten boron trioxide up to 1700°K (ref. 
23 ). Pyrolytig graphite might be operated at a surface temperature ap- 

proaching 4000 K for short periods of time in cases where sublimation and 
carbon contamination could be tolerated. 

At lower temperatures,in muffle tube experiments, we have used steel 
and fused silica buffer rods in continuous contact with gases heated to 1300OK. 
Alumina could be used to -2000°K, and other refractory materials such as 
oxides, carbides and nitrides appear promising for use to 2500 to 3000°K, 
provided attenuation in the probes would not be excessive at these tempera- 
tures. In muffle tube experiments, continuous contact permits the probe tips 
to come to equilibrium with the test gas, thereby eliminating the thermal 
boundary layer in the gas. 

High temperature sources. - To heat gases up to 15, OOOOK, several 
high temperature sources have been required. The advantages and disadvan- 
tages of these high temperature sources such as muffle tube ovens, ac (rf 
induction type) plasma generators, dc (arc type) plasma jets and shock tubes, 
are summ arized in table 1. 

Muffle tube ovens may be used to heat gases up to nearly 4000°K by 
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Table 1. Comparison of several high temperature sources 
with respect to ultrasonic transport property determinations 

High 
temperature 

source Advantages Disadvantages 
Juffle tube No contamination at moderate tempera- Maximum temperature 40OO”K, with some 

tures. graphite contamination. 
Temperature equilibrium in gas; be- Maximum temp.erature w35PO°K, without 
tween gas’& probes. graphite contamination. 
Essentially no flow; very quiet test con- Requires water cooling. 
ditions. Limited visual access. 
Excellent control of temperature, pres- Container more complicated than with other 
sure, composition. sources. 
Accessible with. large probes, minimiz- 
ing beam spread, maximizing S/N ratio. 
No boundary layers, no temperature 
gradients in region under test. 
Long time for measurements. 
Amenable to CW or pulse techniques. 

LC induction Contaminant free test gas. Not as efficient as dc arc. 
:enerator Can heat most gases, including 02, High voltage required to ionize gases at 

Air, N2, inert gases, etc. 1 atm. 
Low flow velocity. High’power required to run N . 
Low acoustic noise level. Circuits more complex than c arc. 2 
Plasma can be pulsed. Tuning, electrical impedance matching into 
Flow conditions can be aerodynamically plasma load more critical than dc arc. 
controlled to some degree prior to inlet Requires screen room. 
near induction coil. Requires forced water cooling. 
Electrodeless. 
Large plasma diameter, N 1 in. 
Extended running periods possible. 



I- Table 1. Comparison of several high temperature sources 
with respect to ultrasonic transport property determination-s 

(continued) 

High 
:emperatur e 

source 
DC arc 

Advantages 
Two modes: jet or transfer. 
Simple construction, operation. 
Efficient heating of many gasps, 
including nitrogen, to 15, 000 K 
or higher. 
Plasma readily accessible for 
measurements . 

Disadvantages 
Contamination by electrodes. 
Limited to gases which do not react with 
electrodes. 
Cannot be used long with air or oxygen or 
corrosive gases. 
Requires high starting voltage, NQOO volts, 
and high running current, ~400 amps. 
Running time limited. 
Requires water cooling. 
Limited control of gas flow conditions, 
stability. 

shock tube Large range of temperature, 
pressure, gas compositions. 
No water cooling required. 
Large volume of equilibrium, 
uniform, stationary test gas. 
No temperature gradients except 
at walls. 

Short time for measurement, <1 msec. 
Severe acoustic noise problems. 
Path length cannot easily be varied incre- 
mentally; only in large steps. 
Large area required for apparatus, 
Possible hazards associated with high . 
pressure systems. 

I 



conduction and convection. With a muffle tube oven, gas composition, tem- 
perature and pressure are easily controlled, and a large volume of gas is 
uniform and nearly stationary. Probes may be in thermal equilibrium with 
the gas. Probe size may be relatively large, ~1 in. diameter, yielding a 
stronger signal. Beam spread is generally negligible, even below 500 kHz. 
Noise is much less than in any other high-temperature source. Measurements 
can be made using either continuous wave or pulse techniques. 

Figure 7 shows the muffle tube concept. -An early version of a muffle 
tube oven was operated up to 1300°K, over atpressure range of about 0.01 to 
2 atm. This oven used a nichrome wire as the heating element, and Vycor or 
fused silica tubing as the muffle tube material. Figure 8 shows a stainless 
steel jacketed muffle tube oven capable of 2000°K and pressures from below 1 
atm up to 10 atm. Molybdenum wire is the heating element, and a mullite 
tube contains the heated test gas. This source is expected to be quite versa- 
tile for high temperatureogas studies. Figures 9a and b show assembly and 
exploded views of a 3900 K oven for use at pressures up to 15 atm. Graph- 
ite is the heater element. Refractory materials could be used as muffle tubes, 
to minimize carbon contamination of the test gas. As a practical matter, a 
present realistic limit on muffle tube operation that maintains the test gas 
relatively contaminant-free is -3000°K. 

AC or rf plasmas are generated inductively, without electrodes. Tem- 
perature range depends on the test gas mass flow and ac power available. 
This source provides a contaminant-free plasma, of low flow velocity. Poly- 
atomic species, including 02, can be run for extended periods. 

In our early monatomic gas work with an induction generator rated at 
7. 5 kw input power, we geonerated argon plasmas at 1 atm at temperatures in 
the range 5000 to -10,000 K. At reduced pressures, other gases were also 
ionized and sustained as plasmas, but only argon was probed ultrasonically. 
Work coil shapes initially followed techniques reported by Reed (ref. 24). 

To improve the stability of the inductively heated plasma, and to more 
efficiently couple electrical energy into it, different coil forms were tested. 
One useful configuration was split coil wound on a cruciform, figure 10. Var- 
ious Vycor and fused silica containers were also tested. 

A 40 kw induction generator (40 kw input power, ~20 kw output power) 
which can be tuned over a broad frequency range up to -100 MHz, thereby 
facilitating plasma initiation, is now in use in our laboratory. 
polyatomic plasmas up to -10, OOOOK and p = 

With this unit, 
1 atrn can be studied, using 02, 

N2, air, etc. as the test gas. 

A dc arc is often used to readily achieve temperatures of 15, OOOOK or 
higher. The dc arc has the longest history of the various plasma sources, 

15 



STAINLESS 
STEEL TUBE 

I 

I \ TEsTM- TRANSDUCER n 

- 
BEARING/ 

FIG. 7 SCHEMATIC OF MUFFLE TUBE 



Fig. 8. Stainless steel muffle tube for high temperature 

high pressure experiments 



Ekpldded‘ view 

A s sembly view 

18 

Fig. 9. High pressure graphite oven 



Fig. 10. Split coil cruciform configuration 



and is the simplest high temperature source for generating plasmas.at 1 atm. 
DC arcs can be operated in a jet mode or a transfer mode. The transfer mode 
permits the arc column to be stretched up to -6 in., affording a large acces- 
sible region for gas studies. Many polyatomic gases, including N2, can read- 
ily be heated to ~15, OOOOK with this source. Oxidation of the electrodes, how- 
ever, rules out oxygen studies with the dc jet. For a given power level, the 
dc jet can generally heat gases to higher temperatures than an induction gen- 
erator. 

In our early studies with the dc jet, the anodes, cathodes, and asso- 
ciated cooling system parts were built largely using standard plumbing fittings. 
A full wave rectifier was also built, to utilize the 440-volt, 3-phase power 
available at the time. These studies demonstrated the basic feasibility of 
using a dc jet as a high temperature source required in our studies. Further, 
these early tests showed that a better electrode configuration, and more ver- 
satile power supply, would be required in order to obtain temperatures in the 
neighborhood of 15, OOOOK. Presently, a commercial dc plasma torch, Ther- 
mal Dynamics Model U-51, and a commercial power supply, Tafa Model 
30”4C 115 kva D. C. Plasma Power Supply, are used. 

Using the improved dc jet equipment (figure 11) sound velocity and ab- 
sorption were measured in argon and nitrogen at temperatures up to about 
15, OOOOK. 

The shock tube produces a wide spectrum of pressures and tempera- 
tures in a test gas. The thermal conditions in the shock tube can be varied 
from room temperature to tens of thousands of degrees Kelvin. The shock . 
tube usually consists of a long straight tube of uniform cross section which is 
generally divided into two sections by a thin diaphragm. The two chambers 
are filled with suitable gases at different pressures (ordinarily at room tem- 
perature). Now, if the diaphragm is rapidly removed, either by puncture- 
induced breaking or by increasing the gas pressure, a rapid compression 
process is initiated in the lower pressure driven gas which subsequently de- 
velops into a shock wave. Attendant to this process is the production of a 
rarefaction wave which travels into the high pressure gas at sonic velocity 
and in a direction opposite to the shock wave. 

The shock wave itself is a finite wave traveling in the lower pressure 
gas &at supersonic velocity. The density, temperature and pressure rise 
across the shock wave are considerable and depend upon the initial gas con- 
ditions and the shock wave velocity. The thermodynamic properties of the 
test gas behind the shock wave are very uniform aside from the buildup of a 
viscous boundary layer on the shock tube wall. 

The reflected shock wave region is useful for ultrasonic measurements 
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since the high temperature gas is not only in thermal .equilibrium * but it is 
also stationary. A test section designed for this purpose is shown in figure 
12. Although there are several advantages in using the shock tube as a high 
temperature source, several disadvantages are also present. Most of the 
problems are associated with noise generated down the shock tube walls with 
the bursting of the diaphragm, sonic disturbances due to the passage of the 
shock wave across the transducers, and short circuiting around the test sec- 
tion. Most of these problems have been overcome and are described else- 
where (ref. 22). The shock tube can be used as a high temperature source 
for the ultrasonic determinations of transport properties. This has been done 
with a rectangular shock tube or test section thus providing a differential path, 
1. e. , two independent ultrasonic systems are used and run simultaneously. A 
measure of the time and amplitude difference across a known path difference 
provides both a sound velocity and sound absorption measurement. A further 
advantage of this system is that the effect of the boundary layer should cancel 
out since both paths will see effectively the same boundary layer. Further de- 
tails of the ultrasonic system used in shock tube measurements are given 
elsewhere (ref. 22). 

Ultrasonic probe design considerations. - The ideal ultrasonic buffer 
rod for plasma diagnostics must satisfy a number of requirements, some of 
which are divergent. The rod should exhibit, ideally: 

High .melting, softening or decomposition temperature. 

High resistance to thermal shock (i. e. , high thermal diffusivity, 
high strength, low modulus, low thermal expansion coefficient). 

Sound velocity independent of temperature, or zero thermal dif- 
fus ivity. 

Zero sound absorption. 

Small acoustic impedance, comparable to that of gases. 

Additionally, the rod material should be readily available, easily machined 
and low in cost. Aerodynamically, the probe should have a spherical tip, so 
as to introduce a minimum disturbance in the flow of the test gas, and should 
be as small as possible. On the other hand, a flat probe tip, several wave- 
lengths in diameter, is desirable from an acoustic point of view, to launch a 
nondiverging plane wave. 

Practical considerations limit the closeness to which a real probe can 

“Recent measurements by Carnevale et aLto be published in the Physics of 
Fluids, have shown that simultaneous ultrasonic (translational)and line rever- 
sal (excitation) temperature measurements were within about 2% of each other. 
These measurements were in the reflected region of shock heated neon. 
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approach any one of these ideal goals. Most of our data have been obtained 
using rods of fused silica. Some data were also obtained using water cooled 
aluminum. 

Early in this program, it became evident that by acoustically impedance 
matching into the test gas, significant improvement in signal-to-noise ratio 
could be achieved. Matching simplifies instrumentation problems, and im- 
proves the accuracy of the ultrasonic data. For these reasons, acoustic im- 
pedance matching was studied in some detail. Results of this study were pub- 
lished in 1965 (ref. 25 ). 

To date, impedance matching has been found practical in shock tube 
studies (ref. 22). Some work is continuing, to develop a practical, ultrason- 
ically matched sensor for use in high temperature sources such as the ac and 
dc plasma generators. 

Experimentally, it is desirable to obtain about a 10 dB change in ampli- 
tude over a.region of substantially uniform temperature. In the 7000°K argon 
example cited above, measurements at f = 3. 5 MHz would yield a 10 dB atten- 
uation over a differential path of 0. 1 in. As the ultrasonic frequency is in- 
creased, shorter differential paths provide 10 dB attenuation. The shorter 
the path is, the smaller the temperature difference is over that path. Thus, 
an important experimental objective is to study the gas at the highest possible 
frequency. In this way, the measured attenuation, and the derived transport 
properties, can be more accurately associated with a particular temperature 
T. Use of higher frequencies also permits smaller diameter probes to be 
used, without introducing beam spreading. A disadvantage of higher frequen- 
cies, however, is that the acoustic power output is less at higher frequencies 
(limited by mechanical failure of the thinner crystal transducer), and also, 
the shorter wavelength pulse is more attenuated by boundary layers and turbu- 
lence. 

Experimentally, a compromise frequency is chosen that provides rea- 
sonable attenuation, ~10 dB, over a differential path length in plasma heated 
gases of -0. 1 in. To ultrasonically probe ac and dc heated plasmas of 5000 < 
T < 15, OOOOK and p = 1 atm, we have used ultrasonic frequencies in the range 
wlto3MHz. When other high temperature sources are employed, e. g., 
muffle tubes or shock tubes, such that T is quite uniform, and pressure may 
depart considerably from 1 atm (0. 01 < p < 10 atm, for example), the total 
path length x may be as large as several inches, and frequencies from ~0.5 
to 3 MHz become useful. 
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THEORETICAL SOUND VELOCITY 

When the ideal gas law applies, the temperature dependence of the 
speed of sound is given by 

2 
c = rRT/n (1) 

where c is the sound speed, y is the ratio of specific heats _C,/C,, R is the 
gas constant per mole, T is the absolute temperature, and M is the average 
molecular weight. The temperature may be determined from a measurement 
of the sound speed once the composition of the plasma or gas is known. In a 
real gas one must take into account the frequency dependence of the sound 
speed, which arises from the finite relaxation times required for the adjust- 
ment of the internal degrees of freedom of the gas during an acoustic com- 
pression. The equilibrium between the various degrees of freedom is not 
established at the higher frequencies and a dispersion of sound speeds results. 
This phenomenon has been considered by several investigators and is dis- 
cussed at length in the appendix. In general, if a particular process occurs 
with the relaxation time T it will produce a dispersion for sound waves in the 
neighborhood of the relaxation frequency 

w = 1/(2TFT) . (2) 

For sound frequencies which are far from any of the relaxation frequencies, 
the sound speed will be given by the usual formulas for a nonrelaxing gas, 
except that those processes which are too slow to follow the sound wave are 
neglected in calculating the gas properties. 

The sound speed in oxygen for example under all the conditions en- 
countered in the present study are calculated assuming that y = 1.40, that 
is, with vibration frozen and rotation fully contributing. At 300°K the sound 
speed in CO2 calculated with y = 1.40 is accurate to within 0. 1%. The car- 
bon diozide sound speeds require a 6% correction at 1300°K due to vibration. 
Under all of the conditions of the present experiments the dissociation re- 
action, ionization reaction, and electronic states were assumed for the first 
approximation to be frozen out. However, the equilibrium degree of ioniza- 
tion and dissociation affected the sound speed through the average mass 
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i% = xaMa t x,M, t xeM 
e (3) 

where the x1 s and the Ml s are the mole fractions and masses respectively of 
atoms, molecules and electrons. The theoretical sound speed of argon and 
nitrogen as a function of temperature is presented in figures 13 and 14. In 
the case of nitrogen the first inflection is due to dissociation. At the higher 
temperatures for both nitrogen and argon the inflections are due to the elec- 
trons. Consistent with the assumption that internal states and chemical re- 
actions are frozen out the sound speed was calculated from equation (1) with 
the frozen specific heat ratio. 

THEORY OF SOUND ABSORPTION 

The theory* which applies to the experimental data to be described can 
be divided into four parts: First, the absorption due to the thermal conduc- 
tivity and viscosity which is referred to as the classical absorption, and sec- 
ond, the ultrasonic losses due to diffusion in mixtures. These two are the 
only mechanisms effective in monatomic gases up to about 7000OK. Third, 
there are the contributions due to internal modes such as rotation and vibra- 
tion. For example, in nitrogen below 3000°K the vibration is “frozen” out 
(see appendix) and only rotation applies. In the case of CO2 both vibrational 
and rotational relaxation must be dealt with. Finally, there is the drastic in- 
crease in absorption above 7000°K which for both nitrogen and argon appears 
to be due to effects associated with electrons, such as radiation. Over the 
temperature range investigated for the first approximation contributions due 
to dissociation reactions, ionization reactions and excited electronic states 
were considered to be frozen out. The details of the theory of sound absorp- 
tion are presented in the appendix. 

The absorption of sound waves in a monatomic gas without ionization 
is proportional to viscosity and thermal conductivity. The expression for the 
sound absorption in a monatomic gas is given by (ref. 26) 

2lT 2f2 (L =- (Y - 1)X 
C YPC [ 

$IIt c 
P 1 (4) 

where uc is the classical sound absorption coefficient, f is the sound fre- 

quency, c is the sound speed, p is the gas pressure, C is the specific heat 
P 

“A full discussion of the theory of sound absorption is given in the appendix. 

26 



! ! I I 

- -WITH IONIZATION 

---WITHOUT IONIZATION 
w I P I 

I 

I 

I 

I 

0 2 4 6 8 IO 12 I4 I6 

TEMPERATURE OK (OK x lO-3) 

FIG. 13: SPEED OF SOUND IN ARGON VERSUS TEMPERATURE 



IO6 

- FROZEN : ELECTRONIC STATES 

FROZEN : IONIZATION 
FROZEN : DISSOCIATION 
WITHOUT RADIATIVE DISPERSION 

IO4 ‘= 
I I I I I I III1 

A 
lo-J loi 

T -OK 
IO5 

FIG. k4: SPEED OF SOUND IN NITROGEN VS. TEM PERATURE 

0’ 
0 

0 

NO IONIZATION 

NO DISSOCIATION 
NO IONIZATION 

t t I t t t 1111 

28 



at constant pressure, YJ is the viscosity and h is the thermal conductivity, 
which for a monatomic gas is equal to 2. 5 Cp~/~. Hence, the acoustic para- 
meters can be expressed as a function of the transport properties. For a 
monatomic gas without ionization the expression for viscosity becomes 

ac 
q = - . const. 

f2 
(5) 

where the constant is calculated from the thermodynamic properties of the 
gas (sound speed, specific heat) and the Prandtl number. 

In the case of a binary mixture of monatomic or dissociating diatomic 
gases there is an additional absorption due to diffusion such that the measured 
sound absorption a becomes (ref. 27) 

a = a 
C + ‘D 

where 

27’ 2f2 
aD =- 

YPC 

M2 - M 
1 kT 

n 
+y-l-- 

Y x1 x2 
(6) 

where 
x1’ x2 

are the mole fraction of the species 

Ml, M2 are the masses of the species 

m is the average molecular weight 

P is the density 

kT 
is the thermal diffusion ratio 

D 
12 

is the diffusion coefficient of the mixture. 

Physically the excess absorption comes about because the lighter particles 
tend to leave the high pressure, high temperature regions of the sound wave 
taking their energy with them. This energy loss drops the pressure and tem- 
perature of the regions they leave thereby weakening the amplitude of the 
sound wave. Similarly when these particles collide with particles in the low 
temperature low pressure regions of the- sound wave the pressure and tem- 
perature are raised. The net effect is that the energy which diffuses out of 
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the sound wave is lost, thus weakening the sound wave. 

For cases in which one of the gases in the mixture has a molecular 
weight which is significantly different than the other, the contribution of aD 
can be large; for example, an equimolar mixture of helium and argon can con- 
tribute an additional 50% to the total sound absorption. It should be noted that 
under these conditions the thermal diffusion term amounts to only about 10% of 
the mass diffusion term. Furthermore, the thermal diffusion term is nearly 
independent of temperature for helium-argon mixtures up to -8000°K. The 
above expression for the sound absorption including diffusion has been veri- 
fied at room temperature bJ Holmes and Tempest (ref. 27). More recently it 
has been verified up to 500 K by Lindsay et al (ref. 28). Hence, diffusion co- 
efficients of binary mixtures of monatomic gases can be determined from 
ultrasonic measurements. 

For the case of polyatomic gases the above expressions do not com- 
pletely account for the sound absorption. Molecular absorption due to rota- 
tional and vibrational relaxation mechanisms must be considered. During an 
acoustic compression there is a time lag in the energy exchange between the 
translational degrees of freedom and the internal degrees of freedom. Thus 
energy is out of phase with the acoustic wave leading to acoustic losses in a 
manner similar to the diffusion losses. These can be expressed in terms of 
the bulk viscosity. When this is done the expression for the sound absorption 
becomes 

a = a 
C 

+ aqt 

where a is the contribution to the sound absorption due to ‘the internal modes. 
This is Jiually described as a bulk viscosity, qt , which is defined so that 

21T2f2 
y/l = ypc VI l 

(8) 

A general formula which describes the frequency dependence of the absorption 
due to internal modes is presented in the appendix. An expression for the 
contribution due to rotation is given by (ref. 29) 

IT C 
a =- 2 rl 

rot 8 C-J 2 
C c 

:p-ev w 
) 

p ‘rot 
0 

(9) 
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where Zrot is the number of collisions necessary for rotation and translation 
to come to equilibrium and w is the angular frequency of the ultrasonic wave 
(2nf) E p and E p are thermodynamic variables 

E: 
PIv = 

c -c 
P, v i 

C 
P* v 

where C, or is the total specific heat at constant pressure or volume, respec- 
tively, &&ding translation and rotation, and Ci i.s the internal (rotational) 
specific heat. Finally, c is the sound speed at the measurement frequency 
and c 

0 
is the sound speed including rotation and translation. 

(10) 

Rotational relaxation frequencies are typically 100 MHz, so that eaua- 
tion (7) holds for megacycle ultrasonic waves at temperatures above 300 K. 
The above equations may be used to obtain an expression for the ultrasonic 
absorption in terms of a, and Zrot . Zmuda (ref. 30) has given approximate 
expression for this excess sound absorption in terms of the rotational colli- 
sion number 

a = a c (1 + .067 Zrot) . (11) 

This expression is valid if the ultrasonic measurements are obtained well be- 
low the rotation relaxation frequency and the contributions due to vibrational 
relaxation are negligible. This appears to be valid over the temperature- 
pressure range of the experiments with oxygen and nitrogen, i. e. , 300- 1300°K, 
at 1 atm. 

A theoretical expression for the temperature dependence of Zrot has 
been given by Parker (ref. 17), which can be put in the form: 

Z rot = ‘rot00 [’ ’ 2 3’2 (2)“’ t ($ + j (&$)[l (12) 

where Zrot 
00 

is the limiting value of Zrot at high temperature and e. is the 
maximum energy of interaction between two molecules and k is the Boltzman 
constant. This expression is applicable to homonuclear diatomic molecules 
and certain triatomic molecules such as CO2 (ref. 31). 

Another case of interest is that in which there are two internal modes 
with widely separated relaxation times (ref. 26) contributing to the bulk 
viscosity. For instance, nitrogen between 3000 and 9000°K and carbon 
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dioxide .between 300 and 1300°K have contributions due to rotation and vibra- 
tion. The rotational relaxation frequency is orders of magnitude higher than 
the vibrational relaxation or the frequency of the ultrasonic wave (= 1 MHz). 
The absorption due to rotation may then be computed from the above theory. 

The expression for the contribution to the absorption due to vibration is 
(see appendix) 

E -E 
Co C V P ,Tr 

a = 
vib -z: 2 E 

1 t ti2T, 
2 

C 
0 P 

(13) 

where 7 = E T and T is the coefficient of the usual relaxation equation, that 
is the true relgxation time (the quantities E and co in this case include both 
vibration and rotation and c includes vibrational relaxation effects). The avib 
from equation (13) may be simply added to a c and a rot because the relaxation 
frequencies are widely separated. 

Equation (13) describes any of the relaxation mechanisms which are 
active in the temperature and frequency range of the experiment. When 
oT’ << 1 equation (13) reduces, to formulas similar to equation (9) where 
Z rot a T’ l 

When o.T* GZ 1 there is still a significant contribution to the ab- 
s 0 rption. When COT’ >> 1 then the absorption due to the internal mode is neg- 
ligible and is said to be frozen out. The present experiments were carried out 
with ultrasonic waves with periods of 1-O. 3 psecs (~1 to 3 MHz). In table 2 
the relaxation times, 71 at one atmosphere, for rotation, vibration, disso- 
ciation and ionization are given for several cases. With this information a 
table of experimental “windows” or temperature regions in which all but one 
or two of the absorption mechanisms are frozen out is presented. By varying 
the ultrasonic frequency and the gas pressure many other experimental win- 
dows may be obtained. It should be noted that other possible acoustic loss 
mechanisms are electronic excitation, ambipolar diffusion, ionization re- 
actions and radiation. These are briefly covered in the appendix and are 
under further investigation. 

RESULTS 

Ultrasonic velocity (l-3 MHz) and absorption data have been obtained in 
the muffle tube in the temperature range from 300-1300’K. The pressure was 
atmospheric for all the data obtained. The gases investigated were argon, he- 
lium, nitrogen, oxygen and carbon dioxide. The sound velocities were used in 
determining the temperatures of the gas. An independent check of the ultrason- 
ic temperature measurement was obtained from a thermocouple measurement 
which was found to be in reasonable agreement with the ultrasonic measure- 
ment. 
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Table 2. Ultrasonic relaxation times 

Gas 
Argon 

Ionization 

Nitrogen 

Dissociation 
N2 - N 

/Vibration 

II Rotation 

1~ ~~ ~ Oxygen 

1~ Dissociation 

O2 
-0 

Vibration 

B otation 

Carbon Dioxide 

issociation 

r 
ibration 

0 tation 

z 

TemperatureOK 

16,000 7. 0 44. 
14,500 0. 7 4.4 
10,000 43. 270. 

8,000 
6,000 

7,000 
4,000 

1,000 

5,000 
3,000 
2,000 

3,000 
1,000 

1,000 

6,000 3. 

1,000 0. 6 

300 2. x 1o-4 

Approximate 
Ultrasonic Relaxation 

Time Atm- p set 

21. 132. 
78. 490. 

1. 1 6. 9 
12. 0 75. 

2.4 x 10’4 15. x 10-3 

2. 13. 
6. 38. 

40. 250. 

0. 8 5. .o 
100. 630. 

1.7 x 1o-4 11. x 1o-3 

07’ 

19. 

4. 

13. x 1o-3 



Table 3, Experimental windows at 1 atm w E 1 MHz investigated in this study 

Temperature range Signif icant 
Gas OK Contributions Possible Measurements 

Argon 300-8000 a Viscosity 
(Similar for other 

C 

inert gases) 8000- 1700 a radiation Radiative absorption 
C’ 

coefficient 

Nitrogen 300-5000 a ,a a a c, thermal conductivity 
C rot’ vib 

5000-8000 9 QD(N-N2) 
Vibrational relaxation time in 

a 
C the presence of dissociation 

8000-9000 very complex 

Radiative absorption (also for 02) 9000 > T a radiation 
C’ coefficient 

Oxygen 300- 1300 a a Rotational collision numbers 
(also for N2) C’ rot 

2200-5000 a ,a a Vibrational collision numbers 
C rot’ vib 

5000-8000 a ,a a ac for oxygen atoms 
C vib’ rot 

Carbon dioxide 300-2000 a ,a a Rotational collision numbers 
C vib’ rot 

Vibrational collision numbers 



Figure 15 is a plot of the sound absorption of argon and heliuF as a func- 
tion of temperature. The temperature range was from 300 to 1300 K. The 
results show that the sound absorption increases with an increase in tempera- 
ture. The increase. in sound absorption is about 40% from 300- 1300°K. 

A plot of the sound absorption of nitrogen and oxygen and carbon dioxide 
is shown in figure 16. The results again show increases in sound absorption 
with an increase in temperature. The increase in sound absorption in nitrogen 
and oxygen is about 70% over a temperature range from 300- 1300°K. The in- 
crease in carbon dioxide is over a factor of 3. 

Ultrasonic velocity and absorption data of argon have been obtained-in 
both a 7. 5 kw induction heater and a 60 kw dc transfer arc. Similar measure- 
ments were also obtained from nitrogen using the dc transfer arc. The tem- 
perature range was from about 7000 to 17, OOOOK. 

In the sequence of traces shown for nitrogen in figure 17, both the sound 
velocity and absorption can be determined. The sound velocity is determined 
by measuring the time shift of the sound pulse for a given change in distance. 
For example, note the shift in the cycle which has the largest amplitude as the 
distance between probes is changed from 0. 175” to 0.325”. The sound absorp- 
tion is determined by measuring the change in amplitude of the sound pulse for 
a given change in distance. Figure 18 shows three traces at each position with 
good reproducibility in both time and amplitude. That is to say, the dc trans- 
fer arc is reasonably stable. The results of these measurements are shown in 
figures 19 and 20. The slope of the line in figure 19 gives the sound velocity 
and the slope of the line in figure 20 gives the sound absorption. The data ob- 
tained in the dc transfer arc were obtained with the momentary contact tech- 
nique described earlier. Similar results were obtained for argon. In probing 
inductively heated gases, both momentary contact as well as continuous con- 
tact techniques were used. 

A plot of the sound absorption vs. temperature for argon and nitrogen is 
shown in figures 21’and 22, respectively. The lower temperature data de- 
scribed earlier are also included with the higher temperature data, ~7000- 
15, OOOOK. At temperatures beyond -8000°K in nitrogen and beyond ~12, OOO’K 
in argon the sound absorption shows a drastic increase with further increases 
in temperature. 
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Fig. 17. Velocity, Absorption of N2 in a D. C. Transfer Arc 
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Fig. 18. Reproducibility of pulses through D. C. arc 
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DISCUSSION OF RESULTS 

Monatomic Gases, 300 to 8000°K 

The results to date may be divided into two temperature regions. In 
the lower temperature region extending from 300’K to about 7000 to 9000°K, 
depending on the gas, the acoustic absorption is due to transport properties 
and the various relaxation mechanisms. Measurements in helium (300 to 
1300’K) and argon (300 to 8000OK) verify the classical expression for ultra- 
sonic absorption. Thee measurements of sound absorption in nitrogen and oxy- 
gen from 300 to 1300 K, together with the viscosity and thermal conductivity 
measurements by other methods, show that the theory for rotational relaxa- 
tion is excellent. The measurements in CO2 serve to illustrate the applica- 
tion of both Parker’ s theory and the theory of relaxation. Finally, the high 
temperature absorption measurements (above 7000 to 9000’K) may provide 
useful information on the effects of electrons, ions and radiation. 

Figure 23 is a plot gf viscosity vs. temperature for helium in the tem- 
perature range 300 to 1300 K. The circles are the experimental points calcu- 
lated from the ultrasonic data using equation (5). The ultrasonic measure- 
ments were obtained in a muffle tube. The crosses are the values determined 
by Amdur and Mason (ref. 1) from molecular beam scattering experiments. 
The data of Blais and Mann (ref. 32) were calculated from their thermal con- 
ductivity determinations. The remaining data, solid triangles, squares and 
circles, represent standard experimental determinations of viscosity using 
either flow through a capillary or damping of a torsional pendulum. The 
ultrasonic determinations of viscosity are within 7% of the average of other 
independent experimental determinations. 

The plot ofoviscosity vs. temperature for, argon in the temperature 
range 300 to 8000 K is shown in figure 24. The circles are the experimental 
points calculated from the ultrasonic data which were taken in the muffle tube. 
The triangles are the experimental points obtained from the ultrasonic data 
taken in the ac plasma. The crosses are again based on the molecular beam 
technique of Amdur and Mason. All other points are experimental determina- 
tions of viscosity by standard techniques. The ultrasonic determinations are 
within 5% of the avera e 

% 
of other independent investigators over the tempera- 

ture range 300 to 1300 K. At the higher temperatures, -8000°K, the experi- 
mental results show 15% scatter centered on the va1ue.s of Amdur and Mason. 
Thus the results show that for monatomic gases, without ionization, the 
transport properties, viscosity or thermal conductivity, can be determined 
at elevated temperatures from ultrasonic measurements. 
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Polyatomic Gases, 300 to 1300°K 

As indicated earlier, in the case of the polyatomic gases there is an 
excess sound absorption which has been attributed to relaxation mechanisms 
or to the bulk viscosity (see equation 8). In the case of nitrogen and oxygen, 
below 2000’K this excess sound absorption has been shown to be due to the 
rotational degrees of freedom since the vibrational degrees of freedom will 
be frozgn out at megahertz frequencies. A plot of the lower temperature (300 
to 1300 K) sound absorption of nitrogen and oxygen as a function of tempera- 
ture is shown in figure 16. Both nitrogen and oxygen have approximately the 
same sound absorption values and the same temperature dependence. 

The tables of viscosity and thermal conductivity are available for oxy- 
gen and nitrogen (ref. 33) in the temperature range 300 to 1300OK. The vibra- 
tional relaxation times are in the kilohertz range so vibration is frozen out. 
Therefore, any excess absorption is due to rotational relaxation. Rotational 
collision numbers may be calculated from the viscosity and thermal conduc- 
tivity and the measured absorption using equations (4) and (9). 

The rotational collision numbers calculated from equation (9) for oxy- 
gen and nitrogen are compared to the theory of Parker, in figures 25 and 26. 
The rotational collision number increases with an increase in temperature in 
agreement with the theory of Parker and the experimental variation of the 
Eucken factor (ref. 31). Also the functional form of the temperature variation 
is in agreement with the theoretical equation of Parker. 

The absolute value of Zrot reported by recent different workers varies 
about 20%. At room temperature the rotational collision numbers cited by 
Mason and Monchick (ref. 31) are based on molecular beam scattering data 

(2) and vibrational relaxation data (ref. 17). Zrot based on the above ex- 
perimental room temperature absorption data is in between the value of Mason 
and Monchick and the values obtained from other ultrasonic measurements. 
Our experimental value is within 10% of the recent acoustic determinations 
(ref. 34, 35). The conclusion is that the theory of Parker may be used to ob- 
tain the temperature dependence of Zrot, the magnitude of Zrot being deter- 
mined from the lower temperature ultrasonic data, thus allowing a rot to be 
computed from equation (9). Therefore, the sum of the transport properties 
can be determined for homonuclear diatomic molecules using equation (4). 

The sound absorption of CO2 as a function of temperature is shown in 
figure 15 along with the data in 0 and N2. Note the relatively large increase 
of the sound absorption of CO 32bO%, 
the temperature range from 80 to 130~~om~~~~a~t~~~~~r~~o~~ ~.~~LLer 
tion frequencies of 02 and N2 are of the order of <, 100 Hz, at room tempera- 
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ture and one atmosphere, the vibrational relaxation frequency of CO2 is -30 
kHz under the same conditions. Since the vibrational relaxation frequency in- 
creases with an increase in temperature there is an additional increase in the 
total measured sound absorption due to this vibrational relaxation. The vibra- 
tional relaxation term, c vib, has been calculated as a function of temperature 
by subtracting the classical and rotational contributions from the measured 
sound absorption. The classical contribution was calculated from independent 
experimental data of viscosity and thermal conductivity. The rotational con- 
tribution was calculated from the theory of Parker, which Mason and Monchick 
successfully used in their calculations for the temperature dependence of the 
Eucken factor. 

The vibrational contribution, a vib, to the total sound absorption over the 
temperature range from 300 to 13OO’K increase from 25% to 50%. The vibra- 
tional r;laxation times can then be calculated from equation (13). The change 
in c/c, which, as indicated earlier, amounts to only 6% over this tempera- 
ture range, is small compared to the order of magnitude change in the vibra- 
tional relaxation time. The vibrational relaxation times as a function of tem- 
perature are shown in figure 27. Th results show the characteristic straight 
line on a semi-log plot of T vs. T -lb. There is more scatter in the results 
obtained at thg lower temperatures than in the higher temperature data. The 
scatter at 300 K occurs partly because the a,ib is a less significant part of 
the total attenuation at the lower temperature and partly because impurities 
are more important. Systematic errors such as impurities would result in 
higher absorption or lower relaxation times. The next figure, 28, shows the 
summary by Camac (ref. 36) of vibrational relaxation time measurements as 
a function of temperature. The dashed line represents the straight line fit of 
the data shown in the previous figure. The solid line represents Camac’ s 
straight line fit of his high temperature shock tube data. 

It is rather interesting that our results are in reasonable agreement with 
other independent data at the lower temperatures since our results were based 
on a single sound absorption measurement at each temperature and the use of 
Parker’ s theory for rotation. 

Overall Results in Argon 

The overall data in argon is shown in figure 29. The solid line is the 
theoretical sound absorption J?-F! based on the transport properties of Amdur 

f2 
and Mason (ref. 1). The dot dash line is based on the transport property com- 
putation of Yos (ref. 37) including the reaction conductivity. The difference 
between the two results is due to Amdur and Mason’ s transport properties be- 
ing based on atom-atom cross sections, neglecting electrons, whereas the 
calculations of Yos include the ionization reaction in the thermal conductivity. 
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The .measured relaxation times for ionization (ref. 6) indicate that the 
ionization reaction is frozen out over most of the temperature range at ultra- 
sonic frequencies of about 2 MHz. This means that the appropriate thermal 
conductivity is the sum of the effect of motion of atoms, ions, and electrons, 
with the composition of the gas held constant. The dotted lines show the ab- 
sorption due to the addition of the thermal conductivity of electrons in the 
absence of reactions (ref. 38; 39). The data indicate that final measurements 
of sound absorption in the temperature range 8000 to 10, OOOOK may be able to 
test the various ways of computing the thermal conductivity due to electrons in 
slightly ionized gases. 

Above 11, OOOOK there is an additional large increase in absorption. Ex- 
cited electronic states, the ionization reaction, ambipolar diffusion and radia- 
tion are the mechanisms which may contribute. 

Preliminary estimates of the relaxation times associated with the elec- 
tronic excited states and the ionization reaction show that both mechanisms 
appear to be frozen out and hence should not significantly contribute to the 
sound absorption at ~1 MHz. The ambipolar diffusion contribution appears to 
be too small to contribute to the sound absorption. The radiation loss may ac- 
count for the increased sound absorption in the temperature, pressure, and 
frequency range of the present investigations. It should be noted that all of 
these mechanisms are presently under further investigation. At the present 
time it is interesting to speculate on the possibility of using an acoustic tech- 
nique to determine optical radiation losses. This would be extremely signifi- 
cant since present spectroscopic methods suffer from optical absorption, i. e., 
in the ultraviolet region in which most of the radiation is originating from the 
high temperature gases, the cool edges absorb this radiation. In the acoustic 
case the compression of the high temperature gas raises its temperature 
slightly. The energy radiated out of this slightly compressed, higher tem- 
perature gas is larger than the energy radiated into this compressed region 
from the ambient high temperature gas. Thus there is an accompanying 
acoustic loss. A further interesting point here is that the losses are due to 
infinitesimal temperature variations within the high temperature gas itself. 

Overall Results in Nitrogen 

A detailed comparison of the experimental results with theory is pre- 
sented in figures 30 to 34. The squares are the experimental data taken in the 
muffle tube. The circles and diamonds are the experimental data taken in a dc 
plasma operating in the transfer mode. The solid lines in each figure repre- 
sent the theoretical calculations. 

In figure 30 the solid line is the classical sound absorption due to vis- 
cosity and thermal Conductivoity. We note that over the experimental tempera- 
ture range from 300 to 1300 K the experimental sound absorption is higher 
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than the classical value. As indicated earlier this excess absorption was at- 
tributed to a rotational relaxation. In figure 31 the rotational contribution to 
the sound absorption has been added. This contribution was calculated from 
Parker’ s theory using parameters taken from molecular beam scattering ex- 
periments and vibrational relaxation measurements. The experimental results 
are slightly higher and parallel to the theoretical results. The rotational col- 
lision number at room temperature used in Parker’ s theory is slightly lower 
than the recent values determined f. om ultrasonic measurements. 

t; 
The experi- 

mental and theoretical values are inexcellent agreement when the more recent 
ultrasonic. rotational collision number at room temperature is used with Par- 
ker’ s theory. This is shown in figure 32. The results indicate that the theory 
for rotational relaxation should be applicable up to temperatures at which dis- 
sociation occurs. 

In figure 32 the theoretical curve has also been extended up to -10, OOO°K. 
We note a maximum value at about 6500OK. In this region nitrogen dissociates 
and the viscosity and thermal conductivity must be calculated for the mixture 
of N atoms and N2 molecules. Accordingly, above w6500°K, the decrease in 
the theoretical value is due to a decrease in the effective molecular weight 
which increases the sound speed and thus decreases the sound absorption. Fur- 
thermore as the dissociation increases thereby decreasing the number of mole- 
cule s , the molecular contribution to the sound absorption due to rotation de- 
creases. There is however one competing term due to dissociation, i. e., an 
additional sound absorption due to the mixture of atoms and molecules. This 
additional diffusion loss has been calculated and at most it amounts to only 
about a 10% increase. This small increase was expected since the molecular 
weights differ by only a factor of two. 

The theoretical contribution to the thermal conductivity due to electrons 
was added in figure 33. Although it increases the total theoretical sound ab- 
sorption by as much as 15%, it still does not account for the difference between 
experiment and theory. 

The contribution due to vibrational relaxation was not considered earlier 
since it is completely frozen out at room temperature (fvib -100 Hz). At the 
temperature at which the vibrational relaxation frequency is approximately 
equal to the ultrasonic measuring frequency and hence should significantly con- 
tribute to the total sound absorption, over 80% of the molecules are dissociated. 
However, there is still an appreciable vibrational contribution to the sound ab- 
sorption, m-25%, and this is shown in figure 34. 

The uvib was calculated in the same manner as the carbon dioxide calcu- 
lations using equation (13). The vibrational relaxation times were taken from 
Blackman’ s data (ref. 40) with corrections for the increased collision effi- 
ciency as indicated by Bauer et al (ref. 41 ). With the addition of uvib the 
theoretical absorption comes within 10% of the ultrasonic absorption measure- 
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ments in the arc at w7500°K. As in the case of argon, there are larce differ- 
ences between the experiment and theory at temperatures above 7500 K. 

All the experimental results for 9 in nitrogen and argon are sum.ma- 

rized in figure 3’5. Both gases show latge increases in absorption at elevated 
temperatures. Experimental sound absorption data from different high tem- 
perature sources show the same increases so that a systematic error does not 
seem likely. Mechanisms such as dissociation and ionization reactions, and 
the excitation of electronic states appear to be frozen out of the sound wave at 
megahertz frequencies. If the above mechanisms are frozen out then the radi- 
ative heat transport would be responsible for the large sound absorptions at ~ 
these elevated temperatures. As indicated earlier, all the possible mechanisms 
for the absorption of sound for gases in the high temperature region are still 
under experimental and theoretical investigation. 

CONCLUSIONS 

For monatomic gases, without ionization, the transport properties, 
viscosity or thermal conductivity, can be determined from ultrasonic mea- 
surements. Other investigators have shown that the theory of sound absorp- 
tion in mixtures can be accounted for by adding a diffusion term. Hence, the 
diffusion coefficient can be determined from ultrasonic measurements in 
binary mixtures of Fonatomic gases. Our measurements have demonstrated 
this concept to 1300 K. 

When tabulations of thermal conductivity and viscosity are available, 
the ultrasonic method may be used to obtain collision numbers. Rotational 
collision numbers measured this way have been measured in oxygen and 
nitrogen up to 1300°K and found to be in reasonable agreement with Parker’s 
theory. A somewhat different principle was applied to obtain vibrational 
relaxation times in CO2 which are in good agreement with other work. 

For polyatomic gases, the sum of the transport properties, viscosity 
and thermal conductivity in the absence of dissociation and ionization, can 
be determined overoa large temperature range depending on the gas. For 
nitrogen up to 5000 K and oxygen up to 2000 K the theory of Parker with room 
temperature ultrasonic collision number determinations accounts for a rot . 
For the case in which vibrational relaxation can contribute to the total sound 
absorption, for example nitrogen at high temperatures, this contribution can 
be calculated from independent shock tube determinations of the vibrational 
relaxation times (see equation 13). Thus, the classical contribution to the 
sound absorption can again be evaluated by subtracting both the rotational and 
the vibrational contributions to the sound absorption. This would then provide 
a determination of the “sum” of the transport properties, viscosity and 

Ii 
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thermal conductivity of polyatomic gases. 

Once dissociation becomes important the efficiency of atoms in the 
equilibration process must be evaluated. Auxiliary experiments to assess 
the effects of atoms on rotation and vibration may be run, by varying pres- 
sure and frequency. At the very least the internal consistency of theoretical 
transport properties and relaxation times (vibrational and rotational) may be 
tested. 

At temperature at which ionization occurs (monatomic or completely 
dissociated diatomic) the total absorption appears to be contributions due to 
viscosity and thermal conductivity and additional losses associated with elec- 
tronic excitation, ionization and radiation. 
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APPENDIX 
TRANSPORT PROPERTIES OF HIGH TEMPERATURE GASES 

AND ULTRASONIC ATTENUATION 

INTRODUCTION 

The purpose of this appendix is to demonstrate the relationship be- 
tween the transport properties of a gas, (viscosity, thermal conductivity, 
diffusion and radiative transport) and the propagation of ultrasonic waves; 
A second objective is to show how effects such as vibration, rotation, ion- 
ization and dissociation may be handled; First, the background of the 
Navier Stokes equation will be discussed and applied to the case of gases 
with no internal modes. The effect of internal modes on sound propagation 
will then be introduced based on kinetic arguments. Finally, some recent 
contributions to kinetic theory will be brought to bear on the problem. 

NAVIER-STOKES RELATIONS 

Proceeding directly from considerations of molecular collisions, an 
equation may be derived relating the probability of finding molecules of a 
certain type in any volume element, to the average collision cross section 
for that type of molecule and its space-time coordinates. This equation is 
called the Boltzman equation. From the Boltzman equation by a standard 
averaging procedure (ref. 1 ) the equations of change may be deduced. These 
equations are (ref. 2 ) conservation of energy 

momentum 

a; - t vvvt at ; v-y+=0 

(AlI 

042) 

and mass 

Et v-(pV)=O . (~43) 

The dependent variables are related to microscopic quantities such as the 
number of particles per unit volume n., the mass of a molecule m., the - 
velocity v., and the energy in the intesnal state of the ith molecule! E., in 

1' 1 
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the following manner: 

density p = run (A41 

mass average 
flow velocity 

c *lnv. > - 1 

v = Em 
i 

average energy 
per unit mass 

heat flux 

. 
- - - 

Q = n < (v. - v) (vi - ;) - (vi - :) t Ei > 
1 

I 

stress tensor 
f3 

P = Inn< (Vi - V) (ii --G) > . 

(A51 

(A61 

(A7) 

w3) 

The above equations are the basic equations of fluid mechanics (ref. 2) 
and are independent of any assumptions concerning the intermolecular 
forces. Kinetic theory provides the detailed information on the connection 
between the dependent variables of fluid dynamics and those of molecular 
dynamics. Several aspects of these definitions deserve further discussion. 
First, in kinetic theory, the internal energy of the gas can be explicitly 
stated as the sum of the kinetic energy of the molecules (with respect to 
the center of mass) and the energy of the internal states. Phenomenolog- 
ically the internal energy of a gas in equilibrium is given by 

dU = CvdT b49) 

where C is a property of the gas. In this case, the first term in the 
energy e;uation becomes 

au 
C 

aT - = 
ax Vi-Z- 

(AlO) 

When treating ultrasonic waves in a gas with internal states, equation (AlO) 
must be modified using kinetic theory considerations. 

. 

The heat flux 6 and the momentum flux or stress tensor %‘are the 
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transport property dependent terms. They depend in general on the particular 
velocity of the ith molecules, v. , given by 

1 

Ti = v. - T; 
1 0 

(All) 

so that 1 V. 1 > 0 describes molecules leaving the new molecules entering a 
volume ele?ment of fluid which macroscopically appears at rest (in local center 
of mass coordinates). 

Consider an imaginary surface element s. The number of molecules 
per unit volume of species i, having velocity vi is ni . All of the molecules 
in volume (S l vi) dt will cross the surface 3 (which is fixed in the center of 
mass coordinates) in the time dt. Let us assume that there is associated with 
each molecule a property, ~/i, the magnitude of which depends on vi. Then 
the amount of this property which crosses 3 is 

tii = ni (3 - vi) dt . 

The amount that crosses per unit time per unit area will be 

L4 12) 

(A13) . 

Now let us assume that the property the particles are taking with them 
is their kinetic and internal (say rotational or vibrational) energies. Then in 
a gas at rest, the heat flux due to molecules @ith velocity Vi and internal 
energy Ei across an imaginary surface 3, is 

. 

. 

dai= niTi ($miV 
2 

i + Ei) . (A141 

When the da. are suyed over all (directions and energies) of the i particles, 
the heat flux’vector Q across the surface 3 results. 

Sim%larly, the momentum flux or stress tensor may be understood. In 
this case the property tii would be 

- 
I+!I 

i 
= miV. 

1 (A151 
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and the momentum flux would be 

dy = m.TnV 
1 iii (A161 

again s umming all (directions and velocities) of the i particles, the total 
momentum flux may be obtained. 

Before leaving molecular mechanics the concept of bulk viscosity 
should be introduced. Suppose the average velocity of the molecules in 
a gas with internal states is increased in a small volume (e. g. by rapid 
compression). Energy will gradually leak into the internal states of the 
molecule as collisions transfer translational energy to internal energy. 
This transfer will take a finite time depending on the efficiency of. the 
transfer process. When the energy is equally distributed between the 
internal modes and the translational modes there will be no further change 
in the average’ velocity of the molecules. However, while the energy ex- 
change is taking place the average translational velocity will be greater 
than the equilibrium translational velocity. Since the pressure increases 
with translational velocity, a time dependent component will appear on the 
diagonal of the stress tensor. It may be shown (ref. 3 ) that this extra 
term in the stress tensor is purely a pressure (as opposed to a. shear 
stress) and is directly proportional to the rate of compression. The pro- 
portionality constant is the well known bulk viscosity. 

The central problem of the kinetic theory of transport in gases is to 
express the momentum flux and heat flux as functions of the flow. velocity, 
temperature, pressure, density and their gradients. This is done using the 
Boltzmann equation, the equations of change, and certain averages over the 
molecular velocity distribution ( the transport coefficients). This has been 
carried out for both monatomic (ref. 1 ) and polyatomic gases,’ (ref. 5, 6) 
with excellent agreement between experiment (ref. 1, 2, 7,8) and theory. For 
the present purposes only the resulting equations of motion, the Navier- 
Stokes relations, ‘will be the starting point of this paper. 

In one dimension, in the Navier-Stokes approximation, the stress 
tensor is 

P = t p ._ $ E _ 4 av 
3 Vi-T (A171 

where 

P = the hydrostatic pressure 

T)’ = bulk viscosity 

rl = shear viscosity. 
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There are two points about equation (A17) which are of interest for acoustic 
absorption. First the bulk viscosity is the proportionality factor between 
the stress and the rate of change of volume per unit volume, that is, 

P’ =.q’ Lap 
P at 

. (A18). 

This can also be expressed as 

P’= -71 v.; . (A19) 

For time independent flows such as Poiseuille flow in a capillary or damp- 
ing of a low frequency torsion pendulum, P’ = 0 and the bulk viscosity does 
not contribute. 

Second, in a one dimensional compression there are shear stresses 
and strains at f 45O to the x direction (ref. 9 ). It should be noted that the 
shear viscosity does not arise because the flow is time.dependent as in the case 
of the bulk viscosity. The shear viscosity is defined so that it depends 
only on the steady state momentum flux, as measured by static experi- 
ments (Poiseuille flow). The internal states do not occur explicitly in the 
momentum flow. Also in the static experiments which define viscosity, 
the internal and translation modes are in equilibrium. For these reasons 
shear viscosity is not very sensitive to internal states. 

The heat flux in a pure gas is usually given by the deceptively simple 
form 

where X is the thermal conductivity. However, recalling that the heat flux 
is an average of both the translational and internal energies, the thermal 
conductivity may be expected to be frequency dependent due to the transfer 
of internal energy. The thermal conductivity may be broken up into two 
parts, internal and translational (ref. 3,5) . 

The resulting Navier-Stokes equations of motion which are applicable 
to the propagation of a plane sound wave in a pure gas are 
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energy 

E+v au la 
at 

momentum 

(A22) 

avtvavtLz2-1a 
at ax p ax p ax [( rl’ t f q E] =o 

and mass 

$ft+Lo . 

(A231 

(~24) 

THE FLUID DYNAMICS OF A SOUND WAVE 

The sound wave is defined as small fluctuations of temperature, density, 
pressure, internal energy and particle velocity about the ambient values. 
The fluctuations 

?=T-T 
0 

;=p-PO 

!i?M T 
0 

-,<< P 0 

G=P-PO p”’ < P 0 

(~25) 

“v=u-u 
0 

v= v (since v SO) 
0 

are sufficiently small to allow non-linear terms in the dependent variables 
to be neglected. Thus, for the ca.se where the ambient temperature does 
not change much over a wave length, the Navier-Stokes equations become; 

energy 

jJ&. .p, .a; 1. SXtr 
1 

at p, ax - 

2% = 0 

PO ax2 
(A261 
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momentum 

tE+ 1 G 1 
at P, ax- P, ( 

2, 
r7’ + $11 

1 
ay =o 

mass 

&ii? a? 
at+ pi Z = 0 . 

(A27) 

(A281 

Equations (A26),(A27) and (A28)are a set of three differential equations 
for the unknowns 6, T, ?, is, and p. There are two additional conditions 
consisting of the constitutive relations, or in the classical case, the ther- 
modynamic equations of state. These relations are 

. 
U = Wp, ‘I’, T) 

. 
P = P(P, T,,T ) . 

(A29) 

As will be shown below the nature of the constitutive relations depend on 
properties of the gas as well as the time history of. the flow. 

The boundary conditions of equations (A26)through (A2g)are provided 
by the assumption that v,’ T, p, and p undergo simple harmonic fluctuations 
about their ambient values. 

$= v-v = v” ,jbt - kx) 
0 0 

@=p-p =Poe 
j(wt - kx) 

0 

?=T-T = ;1*. ,j W - J-4 
0 0 

(A30) 

F=p-p,=F e 
j(wt - kx) 

0 

where v 
0’ PO3 To’ 0 

P refer to the ambient gas and k is the wave number. 
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Theoretically, since an exponentially damped-wave is a solution to 
the wave equation, the simplest way to include damping in this scheme is 
to assume that the fractional change in amplitude is directly proportional 
to the distance traveled. Exponential damping has been found to represent 
the experimental results to within the accuracy of the data. Therefore, 
the sound absorption, a, may be expressed in terms of the amplitude, A, 
as 

-= - 
A 

cAx orA = A e 
0 

-ax 
(A31) 

Equation (A3l)may be incorporated into the boundary conditions ( A30 ) by 
letting k be complex. 

k=k -ju 
r 

Thus, the exponential part of the wave becomes 

.jW - krx) - ax 

The sound speed is then given by 

w 
c= 

k, 
. 

(A32) 

(A33) 

(A34) 

The ultrasonic absorption coefficient and the phase velocity may be 
obtained by evaluating the derivatives in equations (A26) through (A28)using 
the damped simple harmonic variations for V, is, p and !? with (A29) and 
(A30). The resulting five algebraic equations may be used to eliminate all 

the variables F, V, p, T and 0 leaving an algebraic relation which may be 
solved for k in terms of the transport coefficients and the thermodynamic 
properties of the gas. The real and imaginary parts of k may be found by 
giving the phase velocity and the absorption coefficient. This program has 
been discussed by Greenspan for monatomic gases (ref. 10) and Connolly for 
certain models of diatomic gases (ref. 11). 

When the sound -absorption is small compared to the wave number, each 
source of absorption may be treated separately as though the others were 
not active. The total sound absorption is then found by adding the separate 
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contributions. Treating each source of absorption separately simplifies the 
mathematics and gives more of a physical insight; 

DAMPING DUE TO VISCOSITY 

First, the effects of viscous damping on ultrasonic propagation will be 
discussed. When the effects of thermal conductivity are neglected the thermal 
equation of state is not necessary. 
F and the excess density p” is 

The relation between the excess pressure 

The usual assumption is that there is negligible heat lost during a cycle so. 
that the process is adiabatic. In the case of no damping the sound speed is 
given by 

2 C = 
( 1 

!b 
0 aP s 

(A36) 

where the subscript s indicates that the increments of p and p are taken 
holding entropy constant. Although c does not necessarily have the same 
meaning as above when viscous damping is included, it is still a good ap- 
proximation to the sound speed (see below). 

Solving the momentum equation (A27) for the particle acceleration and 
using the mass equation (A28) to eliminate v from the viscous stress term 
(neglecting for the moment r/’ ) we have 

. 

av" -= 1 w 4r)ap- --- - - 
at P ax 3P2 ax 

0 0 

where 

. 
6 

p” =at 

the equation of state may now be used to eliminate p” giving* 

(A371 

(A381 

“‘Note: We have considered 

not change very much due to 

to be a property of the system which does 

viscous damping. 
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C2 . 
SV 0 E 4 rl 
= =-p 

G 

0 ax - 5 p,Z ax 
. (A391 

When the boundary conditions from (A30 ) are applied to equations 
(A28)and(A39) the complex sound I1 speed” V = E may be solved for 

giving 

2 C 0 
( 1 

1 
v = 1tjoT 

where 

Separating real and imaginary parts and noting that 

(A40) 

(A41) 

in accordance with(A34) the relations for the sound speed c and the ab.sorp- 
tion coefficient are obtained by equating the real and imaginary par.ts of (A42) 

and 

(A43) 

(A44) 

a calculation of 7 (taking c z co) shows that 7 = 10 
-10 

sec. Thus when 
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w - 10 6 

WTNlO 
-4 

and the resulting expression for the absorption coefficient is from (A.44) 

1 Tw 
2 

2 
2 

a = - = - 
z co 

w 
3 

p oco3 

. (A46) 

Examination of equation (A43) in light of the size of T and a shows the 
c =c 0 for frequencies in the megahertz range (at atmospheric pressure). 

DAMPING DUE TO THERMAL CONDUCTION 

As will be shown later the effects of internal modes have a significant 
influence on the ultrasonic attenuation due to thermal conductivity. For the 
moment let us consider the damping due to thermal conduction in the absence 
of internal contributions to the specific heat. This is the case for a mon- 
atomic gas at standard conditions. 

The linearized Navier-Stokes relations (A26-A28) neglecting viscosity 
and X 

i 
are 

energy 

au” + PO av --- 
at 

x a2y = 0 
P ax 0 P 0 ax2 

(A47 ) 

momentum 

a7 
at tf 5 

ax = 0 
0 

(A48) 

and mass 

W a7 
at +p~ ax -=o . 

In addition the constitutive relations equivalent to (A29) and (A30) are needed. 
Since there are no internal modes 

A-11 



dU = CvdT . (A50) 

Assuming that the density is a uniform function of p and T and that the devia- 
tions from equilibrium are small, the second equation of state is 

(A51) 

or 

F -= 
pO 

KT& p? (~52) 

where K T is the isothermal bulk modulus and p is the coefficient of thermal 
expansion. 

Applying the boundary conditions (A30) to equations (A47) through (A52) 
a set of simultaneous equations is obtained. These equations are 

[ 
Cv-j + x - 

V PO 1 T”- 1 po - - v=o v po 
v”. 1 

POV 

;=o 

P 0 - 
v v. 

= 0 

z- 

PO 

- KT; t p? = 0 . 

(A53) 

(A54) 

(A55) 

(A56) 

Eliminating ??, 6, T, T we obtain, 
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PO 
--P-t 

pO 

A C-j*-- C 
V 

p‘O 1 

V2KT P 
0 V 

-j-2+-- . (A57) 

For a perfect gas 

pO 

F- p=cP-c V 
0 

(A581 . 

2 
, where c = y 

‘oKT 
is the ideal gas sound speed (com- 

pare equation (A36) ), we okain 

= l- jNf+J 
C 

( 1 
2 

1 - jwT + 

where 

A 

c 2 
1-jyd 

0 

( 1 

cppov 
L 

-- = 
V 1 - ju A 

CpPoV2 

T= 
A 

c Lc P 
0 P o 

(A59) 

(A60) 

(A611 
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C 

As in the case of viscous absorption letting 
of Equation(A60) allows us to write finally 

$ rv 1 on the right hand side 

C 
0 ( B -= l- jy&T 

v l- jwT (A621 

Separating real and imaginary parts as in the case of viscosity, the velocity 
and absorption coefficients are 

(> >> y!) 

c 2 
0 

( ! 
- 
C 

= -p&g 

and 

1 c 
a = 

( ) 

y-l a27 
7 T c -72 

0 0 

(A63) 

. (A641 

Finally in the limit where ~37 < .< 1, 

1 -1 
+ 

2 
I- 

1 -1 A 2 
a= - ‘d = - 

2 
(A65) 

c 2 y3 L3 - 
c 

0 0 
cp 

P o 

The relaxation time for viscosity is equal to 4 Pr 
number) times the relaxation time for therma 4 

N 1 (Pr is Prandtl 
conductivity. Therefore in 

light of the discussion on viscous damping equation(A65) is an excellent 
approximation. 

Equations (A41) and (A65) g ive what is often referred to as the classical 
absorption. 
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I - 

a = i&y 4 [ y-lx 
C 3-+ c 

0 P I 
(A661 

These equations are exact for gases with no internal states, such as a pure 
monatomic gas. This has been verified experimentally at room tempera- 
ture by several investigators, see for example Greenspan (ref. 10). In 
addition, equation (A66)gives that part of the absorption due to thermal con- 
ductivity and viscosity of mixtures of monatomic gases and with slight mod- 
ification provides the classical part of the absorption for polyatomic gases. 
More will be said about the above thermodynamic arguments of equation 
(A66) in the section on interpretation of internal states. 

Since it is desirable sometimes to measure absorption at various pres- 
sures, the range of applicability of equation(A66) should be established. The 
Navier-Stokes equations are based on the expression of the distribution co- 
efficients in powers of the mean free path. Therefore, when the mean free 
path becomes comparable to the sound wave length the expressions derived 
above should be expected to fail. Extensive comparisons of theory and ex- 
periment were carried out by Greenspan (ref. lo), and Sirovich and Thurber 
(ref. 12). The classical expressions for sound velocity and absorption fail 
for 

‘d = 0.1; = 0.1 + 
C 

(A671 

where 7 is the mean time between collisions. 
be&veer? lo6 

For angular frequencies 
to lo7 the classical expressions are good down to pressures of 

1 mm Hg to 10 mm Hg. 

DAMPING DUE TO BINARY DIFFUSION 

A binary mixture of monatomic gases shows greater absorption than 
predicted by equation (A66). This is due to diffusion processes in the gra- 
dients of the sound wave. The equations of change are the same as for 
the pure gas case except that the conservation of mass holds for each 
species separately 

(A681 
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w2 aF 

+ P 
2 

at 
- = 0 

o2 ax 

where the subscripts 
fusion losses may be 
lures 

QA-hEtp c 
Ol Pl 

P -RT 
‘,(v”1-3 +P, C 

2 P2 
To(q2-fl t~(Vl-?2)XlX2aT. 

a. 4. 

(A701 

(1) and (2) refer to the two species. Formally the dif - 
traced to the heat flux vector which becomes for mix- 

Equation (A70) has an obvious interpretation. The excess heat loss is 
due to the flux of molecules of each kind, which take their respective energy 
per gram (p C 

Ol v1 
To and p, ‘Cv To) with them. The last term on the right 

2 2 
side of equation (A70) i’s the effect of thermal diffusion. 

The Navier-Stokes relations (with Q modified to agree with equation 
(A70)), the conservation of mass, and the equation of state provide five 
simultaneous equations. However, there are six dependent variables p, 

pl, P 2, T, vly and v2 . Hence one more relation is necessary. The final 

relation is found by calculating (ref. 1) the difference between the average 
velocity of each species ‘2 
The resulting equation is 

1 
and V2 relative to the center of mass of the fluid. 

-M 
el2 aT 

Fl axta - T ax (A7 1) 

and X 
1’ 

X2 are the mole fractions of species 1 and 2, D12 is the binary dif- 

fusion coefficient and at is the thermal diffusion ratio. 

When equations (A68), (A69), (A70) and (A71) are coupled with the 
Navier-Stokes relations and the simple harmonic boundary conditions ap- 
plied as before, the excess absorption is found (ref. 13, 14) to be 
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aD= 2c P 
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M2-M 
l t y-l 

n Y OT 

The total sound absorption, a, may be written as 

a =a +a 
C D 

- 

3 

I 
L- 

. (A72) 

(A73) 

where the viscosity r), and the thermal conductivity k, are the viscosity 
and thermal conductivity of the mixture respectively. 

Equation(A73) provides the absorption coefficient in the absence of 
internal states. Ultrasonic measurements in pure gases may be used to 
provide viscosities or thermal conductivities under the assumption that an 
Eucken factor ( X/r)c ) may be calculated. Measurements in both the pure 
gases and mixture or h t e gases provide the diffusion coefficient. Expres- 
sions for the viscosity r) , thermal conductivity A, and the thermal diffu- 
sion ratio a must be supplied in order to obtain the diffusion coefficients. 
The absorptizh due to A and r) contributes about one-half of the total ab- 
sorption for equimolar mixtures of helium with another inert gas. There- 
fore, an x percent error in A and r) leads to an error of x in the diffusion 
coefficient measurement. In regions of interest the thermal diffusion term 

is only one tenth of the mass term, 

M2 1 
-M 

M (A75) 

Thus a 20% error in a leads to only a 2% error in the diffusion coefficient 
measurement. TherefTre, a T may be computed with sufficient accuracy 
from kinetic theory. Furthermore, for many mixtures, e.g. (He-Ar),aT 
is nearly independent of temperature (ref. 15 ). 

An exact relation for thermal conductivity and viscosity of binary 
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mixtures has been derived from kinetic theory (ref. 2). The necessary para- 
meters are A and r) of the pure species, the binary diffusion coefficient D12 
and two parameters which are not very sensitive to the intermolecular poten- 
tial function. In a recent review Brokaw (ref. 16) showed that the exact theory 
and experiment are in excellent agreement. The exact theory gives the vis- 
cosity and thermal conductivity as functions of the pure properties and the 
diffusion coefficients (except for some nondimensional parameters which de- 
pend weakly on the intermolecular potential. These may in principal be ob- 
tained by iteration of the data reduction) 

A = A 
( 

X 
P’ 

D12) 

r) = r) ( 
D 

Qp, 12 > 

(A761 

0477) 

so that equation (A73) becomes a relation between the diffusion coefficients 
2 and the properties of the pure gases (once ap/o is measured). 

Approximations have been given by Wilke (ref. 17) and Mason and 
Saxena (ref. 18) for the viscosity and thermal conductivity of mixtures in 
terms of the pure gas properties alone. These expressions have been com- 
pared to the exact expression by Brokaw (ref. 16) and Amdur and Mason (ref. 
15). The approximate equations are within 4% for viscosity and 8% for thermal 
conductivity at the maximum temperature of interest (N8000OK). These -errors 
lead to a maximum error of 5% in the sound absorption due to viscosity and 
thermal conductivity (equation (A60) ). 

The diffusion coefficient measurements are accurate to about 5% at 
8000’K (or better at lower temperatures)* and may be made by measuring the 
ultrasonic absorption of the pure components and of the mixture; The exact 
theory may be used to obtain the transport properties of the mixture. How- 
ever, the theoretical and experimental uncertainties limit an increase in the 
accuracy of the experiment to about 2% in the region where the approximate 
formulas are most inaccurate. 

ULTRASONIC ABSORPTION DUE TO INTERNAL MODES 

As explained in the section on the Navier-Stokes relations the presence 
of internal modes gives rise to a pressure which is out of phase with the sound 
wave and therefore weakens the sound wave. Another way of looking 

‘?n the neighborhood of 2000°K the approximate formulas are within 1% of the 
exact formulas. 
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at internal modes is to consider the energy exchange between translation 
and the internal modes as a chemical reaction. In the compression, energy 
leaks into the internal modes and at some later time energy is fed back into 
the translational mode. The reaction is more efficient in one direction than 
in the other. Therefore, a certain amount of energy is lost each cycle. 
The approach of phenomenological, irreversible thermodynamics considers 
all the internal modes, (vibration, rotation, and chemical reactions) in one 
formalism (ref. 19 ) . However, the less formal approach of Herzfeld and 
Litovitz is closer to the mechanics of the problem and will be used%here. 

In the kinetic theory of polyatomic gases, the translational tempera- 
ture is defined so that the perfect gas law is obeyed at frequencies far 
from the collision frequency of the gas. In addition the temperatures of 
other modes are allowed to be different from the translational (ref. 3) 
temperature. Independent translational and internal temperatures lead to 
the classical relaxation equation of Herzfeld and Litovitz. Expressions for 
the bulk and shear viscosity in terms of the relaxation time for the internal 
and translational modes respectively are also obtained. 

The dispersion of sound waves due to internal modes may be calculated 
in the same way as the dispersion due to transport mechanisms. Since the 
translational temperature follows the sound wave in the frequency range of 
interest, the equations of state must be expressed in terms of it. As men- 
tioned above the equation of state p = p(p, T) as a function of the translation- 
al temperature T 

tr 
is the perfect gas law so that equation (A52) holds. 

The equation of state equivalent to equation(A29) must be obtained from 
the relaxation equation 

dUi 

dt+? l (Ui - uoi)= 0 (A781 

where 
Ui is the internal energy of the ith mode, 

U. is the energy the ith mode would have if it were in equilibrium with 
i 
the instantaneous value of Ttr. 

In other words the rate of approach to equilibrium is directly proportional to 
the deviation from equilibrium. 

There is one equation such as equation(A78) for each internal mode. 
The relaxation times of the gases of interest are sufficiently separated so 
that they may be considered independent of each other. Thus it is necessary 
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to consider. only one mode at a time (ref. 9 ). When the system is in 
equilibrium the internal energy is related to the internal temperature, T., 
by the relation 

1 

dUi = Cv dT. 
i 

1 (A79) 

where C 
V. 

is the internal specific heat. 
1 

Phenomenologically one would expect a similar relation to hold for 
small deviations from equilibrium, with essentially the same proportionality 
constant. In fact the rigorous kinetic theory (ref. 20) which leads to equation 
(A78),defines the temperature of the ith mode so that equation (A78) holds 
exactly; even if the gas is not in equilibrium. The desired constitutive 
relation is then 

dU = C dTtr t Cv dT. 
. Vtr i 

1 

and the relaxation equation (A78) is 

dTi 

d 
t l,(Ti - Ttr) = 0 . 

(A801 

(A811 

dTi may be eliminated from(A8 1) by assuming a simple harmonic variation for 

T 
tr 

- To and Ti - To in equation (A81). To is the average temperature of the 

gas. The final form of the constitutive equation (A80) is then 

dU = C tCv 
1 

Vtr i 
1tjwT 1 dTtr 

or in terms of the zero frequency specific heat 

(A821 

% 
=c tc. 

Vtr ’ 
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dU = 
[ 

C V C 
i 

jwT 
1tjwT 1 dTtr 

= c. V dTtr 
. (A841 

Now equations (A26-A28) and the constitutive relations (A29)and (A84) 
form a set of 5 relations in the variables U, T, v, p and p as before. Sub- 
stitution of the boundary conditions (A30) allows the wave number k, and the 
absorption a to be determined. The replacement of T with Ttr in the energy 
equation and the effects of the sound wave on X i will be elaborated upon below. 

For the present the thermal conductivity A, and the viscosity 77, will be 
set equal to zero and the effect of a single internal mode on the dispersion of 
sound will be calculated. In this case the Navier-Stokes equations (A26-A28) 
are 

(A.8 5) 

N 

1 
Et- 

PO 
g=o 

AiT 
at + P 2x = 0 

0 ax . 

(A861 

(A871 

In addition we use the perfect gas law given by equation (A52). 

With the bound conditions (simple harmonic variation of the dependent 
variables) equations (A85-A87) become a system of algebraic relations simi- 
lar to equations (A53-A56) with cv replacing the coefficient of ytr in the 
energy equation (A85). 

Eliminating ytr, 7, F, and; and solving for -$ one obtains 
V 

(A881 
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Since the perfect gas law holds between p,, p,, Ttr 

pO 
7 p = cp-cv , 

0 

and equation (A88)may be written as 

1 - 

V2 

= 
KTPo 

(A891 

. 

With the zero frequency sound speed c 
2 

0 
becomes 

= pyK , the final expression 
o T 

2 
lt EVjtiT 

ltEPjwT 
(A911 

C -C c -c 
where E = 

V i 
and E = 

-i 
P 

cV 
P C 

. 

P 

Rationalizing (A91) and writing $ explicitly in terms of kr and a we 
obtain 

- 2jc 
2 

0 

E -E - E 
1t vE p P 07’ 

ltw2T1 
2 

P P 

(A=) 

where 7’ = E 7. 
P 
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Since we are again interested in small absorption (a << k),coZ a 
( > B 

2may 

be neglected. Equating real and imaginary parts of equation (A92), the expres- 
sions for a and c are 

E -E Cd c V 07 
a = 

z 2 
1 + w2T’ 

2 
C 0 eP 

k)1 = 
[ 

1 t ep E’ --•v 0 2 7’ 2 -l 
1 

2 

P t QJ27’ I 

(A931 

l 

. (A941 

Before discussing the nature of the above equations, it is convenient to 
show that ultrasonic dispersion due to chemical reactions is also described by 
equations such as 

, 

DAMPKING DUE TO CHEMICAL REACTIONS 

The effect of chemical reactions on a sound wave may be assessed qual- 
itatively (ref. 9 ) by considering the application of LeChatelier’s law, that is, a 
chemical reaction proceeds in the direction which resists any change in the in- 
dependent thermodynamic variables. There are two effects. When the tem- 
perature increases in a sound wave the reaction shifts in such a way as to ab- 
sorb heat. When the pressure increases in a sound wave the reaction proceeds 
so as to decrease the volume (per mole). 

Three body dissociation and ionization are the reactions of interest. In 
a dissociating and ionizing gas, the typical reactions are 

A2 t b - 2A t b dissociation (A951 
\ 

and 

A t b - At t e-4-b ionization . (A961 
\ 

Equations(Aq5)and(A96)are simplified. In actuality there are many coupled re- 
actions going on. For instance in the case of ionization of argon three of the 
most important of the reactions are 
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Ar t Ar - Art t e- t Ar 
\ 

Ar tArt A2Ar 
t 

te- 
\ 

Ar t e- - Art t 2e- . 
\ 

(A971 

(A981 

(A991 

Since the reaction rates are different for ionization by e-, Art and Ar all 
three reactions are necessary to calculate dispersion of sound. 

First, the simple three body dissociation reaction given by(A95) will be 
considered under the assumption that all third bodies b are equally efficient in 
dissociating A. Physically, the reaction rate is proportional to a factor repre- 
senting the cross section for the reaction and the product of the concentration 
of reactants; this represents the probability that molecules of the reactants 
should collide. The net reaction rate is the difference between the forward and 
reverse rates. The rate equation is 

1 dNA 
z-T-= 

kdNA I’&- kr N 2N 
2 A b (AlOO) 

where NA, NA 
2 

, and Nb are the number of moles per unit volume of the re- 

actants, and kd and k, are the dissociation and recombination rate coefficients. 
The rate constants defined in equation(A1OO)are functions of temperature alone 
(except at very large pressures). These rate constants are usually employed 
in the description of the disso,ciation reaction. 

The rate equation is more conveniently expressed in terms of the mole 
fractions and the progress variable. The mole fractions are: 

xA 
= NA/N and XA = NA /N with Nb = N (AlOl) 

2 2 

and N as the total moles per unit volume. The progress variable, E, is de- 
fined such that 

6c = -6NA 
2 

= eNA/ . (A102) 
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The rate equation then becomes 

where 

& d(aSL =‘kX 
dt 

* A2 
- kRXA2 

kf 
= N kd , kR = N2kr . 

(A103) 

(A104) 

The relaxation equation equivalent to equation (A8l)may now be derived 
from equation (A103). The progress variable replaces the internal temperature. 
The problem is to find a differential equation for c (t) in terms of the ambient 
thermodynamic variables, and the constants of the reaction. The sound wave 
causes small variations of the mole fractions and the rate constants about their 
equilibrium values. Therefore, equation(A 103) may be linearized about the 
equilibrium conditions. Denoting equilibrium values by the subscript o and 
the fluctuations by the differential operator 6 the rate equation is 

1 z!m 
N dt = (‘0, + 6kf) (XoA2 ’ 6xA2) - 

(koR + 6kR) @, + 2xoA6xA) l 

Differentiating the mole fraction, 

S(Xi) = 6 2 
( > N 

(A 105) 

(A 106) 

using the definition of 5 equation(A102) and expanding equation (A106) we obtain 

L =5;)k X -k X2 -k X 
N dt 

Of OA2 [%(e “)I 

- 2ko;‘o’;,;;; -9, + 6kfXoAL aii,:“i* l 

(A 107) 
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The rate equation can be further simplified using the characteristics of 
the reaction in equilibrium. First, in equilibrium, the progress variable is 
constant 

$=kX -k X2 =O. 
Of OA2 OR ’ A‘ 

(A108) 

Furthermore, the ratio of the rate constants and the ratio of the mole frac- 
tions are a constant; the usual equilibrium constant is 

k X2 
Of K= -= OA . 

k X 
OR 

‘0 
A2 

(A109) 

Finally, the heat absorbed when one mole reacts in an isothermal isobaric re- 
action, Ho, and the volume change, V,, are related to the equilibrium constant 
by the relations 

Ho i3(lnK) = ab-4 = L . 
aT 

RT2 8P RT 
(AllO) 

By substituting the results of equations (A10’8),(A 109) and (A 110) into the rate 
equation (A107) the relaxation equation is obtained. Specifically, the first two 

terms on the right of (A107) are zero. From (A109) 

6k = K6kR tk 6K = K 6kR tk e(lnK). (Alll) 

Of OR Of 

Factoring -k, X0’ 
R A 

from each term and eliminating 6 (1nK) using (A109 ) the 

rate equation becomes 

1 m=-, X2 
N dt 

OR OA 
t 

1 
X 

OA2 

-- 
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Equation (A112) is the relaxation equation for the dissociation reaction which 
is equivalent to equation (A81) for the internal mode.. 6c represents the “tern- 
perature” of the chemical reaction. 

Letting f have a simple harmonic time variation and solving for 66 the 
rate equation becomes 

%= +L6T- i& 
vO 

N 2 - 6P 
RT 

RT 0 
0 

where 

9 = 

and 

4 
X 

OA 
+X 

1 
- -1 

OA2 1 -1 

(A113) 

(A114) 

T= + 
KoRXoA . 

Unlike vibration and rotation, chemical reactions affect the equation of 
state. It should be noted that the mole fraction of atoms occurs in the relation 
between pressure and translational temperature because the average mass of 
the particles changes as the reaction progresses. The equation of state for a 
perfect dissociating gas is 

mp 
’ = RT 

(A115) 

where 

jyii= x 
OA 

mA t X 
“A * 

OA2 2 
(A116) 

Linearizing and using the fact that in the nonequilibrium process XA is an in- 
dependent variable gives 

6p= 6p 
pO PO 

- s5 - 6$ . 
N 0 

(A117) 

Where the 6c has been introduced from(Al02) (A117) is the equation of state 
analogous to (A52) for a perfect gas. The progress variable may be elim- 
inated from the equation of state using equation (A113) to obtain 
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Finally, the equation of state for energy must be calculated. In the ab- 
sence of thermal conduction and viscosity the% energy equation (A26) may be 
written 

au Lap 
at =p at’ 

Or, in terms of the enthalpy 

. aH= Lap 
at P at l 

(A1191 

(A120) 

The enthalpy in the process defined by the sound wave is a function of T, p and 

c 

H = H (T, P, C) . (A121) 

Formally we may write 

aH= 
%t 

(A 122) 

The first two terms refer to the process in which 5 is fixed. Thus to these;- 
g;t that the deviations of 5 from equilibrium are small the coefficients 

aT’ 
8p may be calculated using the thermodynamics of an ideal gas. Therefore 
(ref. 9) 

(9 aT PS 
=TP+L, 

TE. P. P (A 123) 
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term in equation (A122) is simply the 
The energy equation becomes 

H 
ap,oiag=1 !E 
at XN at p at .* 

(A124) 

0 0 0 

Eliminating 6s in the energy equation 

c t 
P 

This can be further simplified by noting that 

v=T . 0 0 

The equations of motion may be summarized as before 

energy 

momentum 

and mass 

cp 6T - 

av +L J!E=-J 
at p ax 0 

1 %L,av=, 
P, at. ax 

with the equation of state 

- - KT 
PO 

6p t p6T = 0 

(A126) 

(A 127) 

(A 128) 

(A129) 

(A130) 
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where 

c = cpt Ri 
P Ei l’t jo’T 

KT = 

(A131) 

(A132) 

(A1.33) 

Before solving the equations of motion, it is instructive to look at the 
physical significance of the various “thermodynamic” quantities. The complex 
quantities ET, p and Gp are the sums of the usual isothermal compressibility 
KT, coefficient of thermal expansion p, 
gas with no chemical reactions, 

or the specific heat Cp for an ideal 
and a frequency dependent term which repre- 

sents the chemical reactions. The frequency dependent term goes to zero as 
W~CX) and the chemical reaction is frozen out as should be expected. 

Sometimes it is convenient to write these coefficients in terms of their 
equilibrium values, that is, with the chemical reaction included in the real 
part. This is convenient because KT, p and C are tabulated with chemical 
reactions included. The relation between the f!oz.en(KT J and the equilibrium 
KT, isothermal compressibility will be worked out and compared to E-(T as an 
example. 

The equilibrium isothermal compressibility may be calculated from the 
usual definition using the perfect gas law for an ideal dissociating gas (ref. 21) 

KT = Lie 
( ) 

1 
p apT=m (A13P) 

In contrast to the calculation which leads to equation(A117)the mole fraction is 
no longer an independent variable. The mole fraction instead is constrained to 
be a function of temperature and pressure by the equilibrium relation 

X2 
A 

X 
A2 
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Taking the logarithmic derivative of equation (A135) 

2 axA 1 --- 
X 

A. ap 
xA2 

or expressing, the left-hand side of (A135)in terms of 6f 

and substituting equation (A137.) into equation (A134) gives 

1 K 

KT = i + RT l 
0 

(A 136) 

(A137) 

(A138) 

The same equation may be obtained from T(T when w j 0. 

The formulation below is used in order to keep the division between the 
internal modes in equilibrium with the translational temperature explicitly 
separate from the contributions due to the chemistry. KT, p, Cp are the fro- 
zen gas properties which are functions of the translational temperature, and 

KT ’ PC* c~, are the contributions of the chemical reactions. 
coe$ficient K 

The complex 
and c 

T” p 
may then be written as 

C 

iz =c t 
PC 

P P 1 tjw7 
,c = 

PC 

!KT 
‘C V 

KT 
= KT t 

1 tjw7 ’ KT C =+* 

B 

(A 139) 

(A 140) 

(A 141) 

Also, since the differential notation is no longer necessary for clwity, the 
ultrasonic perturbations of quantities such as 6T will be written T as before 
equation (A30). 
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The boundary conditions (A30) may be applied to the equations of motion 
in order to evaluate the complex velocity 

1 k 
Y-=x--- 

ja. 
0 ’ 

In particular, the momentum and mass equations become 

and 

rv 
l l ;=o v- - 

PO v 

z _ l ;=o. 
po v 

(A 142) 

(Al43 

(A 144) 

Using the above equa:ons (A.143) and (A144) with the equation of state (A118) 
to eliminate V and 

pg 
we obtain 

;t,5:=0. (145) 

Finally, i and ? may be eliminated between equations (A 128) and (A127) and 
the complex velocity solved for 

-[ 

1 TO 
XT - - 

ii.! 

V2 PO cp 
I - 

(A146) 

After extensive algebraic manipulations similar to those outlined on 
pages 152 and 154 of reference (9) the velocity and absorption are found to be 

2 
C t-1 [ 1-A 

&J -1 
= 

C 
1 tu27r 

2 0 I 
(A.147) 
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and 

a - 
w 

where 

c2 = 
0 

and 

A= 

lcA 
07 

=2 =2 
1 t cd2T’ 2 

q-1 = (A 148) 

0 

k (KT t KTcr’t - $;;$ K.T :,, ) -l. (Al491 

TO (P + PcJ2 

-c 

C 
P P 

2 cp+c 

> 

PC 

PO 
C 

P cP+ c PC 
X-P, cp 

. . C 

(A150) 

c 
KT + KTc - i+$ ) 

The functional form of the frequency dependence in the final expressions for a 
and c for chemical reactions is identical to that of internal modes. 

All the quantities which go into the calculation of A and c are easy to 
evaluate. The coefficients such as KT and p are obtained from the equation of 
state for a perfect dissociating gas with fixed dissociation 

p=+ and K 
1 

= - 
T 

0 
P l 

0 

(A151) 

The part of the specific heat which is in equilibrium with the translation in- 
cludes all the modes which have higher relaxation frequencies than the ultra- 
sonic wave and the chemical reaction. Quantities with the subscripts c are 
defined.by the properties of the chemical reaction from equations (A139-Al41).For 
both the dissociation and ionization reactions 

m 
v= p. 0 0 
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The $ for ionization is 

(A 152) 

The quantities /3 t (3 and Cp t C 
C 

PC 
are the usual thermodynamic co- 

efficients of specific heat and thermal expansion as pointed out for K 
T 

t Kc in 

equation (A 140). The usual formulas which apply for the gas in equilibrium 
can therefore be applied. In particular, the equilibrium specific heat ratio is 

T (P + PJ2 .s 
y = l- 

1 
KT t KT l 

(153) 

pc C 

Therefore, as before (equation (A91) ) the quantity co is the usual low fre- 
quency sound speed which is tabulated in thermodynamic tables. The function- 
al form of the frequency dependence in the final expressions for p and c for 
chemical and internal modes is identical. 

GENERAL DISCUSSION OF RELAXATION 

The present studies have shown that with an appropriate choice of tem- 
perature, pressure (density) and sound frequency convenient acoustic regions 
(“windows”) can be chosen in order to isolate and study various relaxation 
mechanisms. The normalized sound absorption., y , is the important quantity 

because when the ultrasonic angular frequency wyis much less than 
given loss mechanism 9 is constant. 

-+ for a 
The sound wave in the temperature 

density-frequency regio: where the continuum mechanics (Navier-Stokes) ap- 
plies is always below the translation relaxation time. Therefore when the 
normalized absorption goes to zero for an internal mode the classical a 

-5 due 
0 

to thermal conduction and viscosity is still finite. 

The normalized absorption due to an internal mode is plotted vs. fre- 
quency in figure (A- 1) for a typical case. 
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Figure A-l 

Dispersion in a Gas With Internal Modes 

At very low frequencies the normalized absorption is constant and scales 
with 3 - The absorption in this region is directly proportional to the 
relaxa ion times and therefore may be used to obtain collision numbers. 
As the angular frequency of the ultrasonic wave w7< 0.1 the internal 
mode can no longer fully follow the ultrasonic wave. At LJ T= 1 the atten- 
uation falls to one half the low frequency vlalue. Finally, whenwT> 10 the 
normalized absorption drops to zero with - and the corresponding internal 
mode is said to be frozen. 

cd 

The sound speed versus frequency also exhibits a frequency dependence. 
When w N 0 equation(A147) reduces to the zero frequency sound speed. As 
the frequency increases the sound speed rises until ~Th10 where the sound 
speed levels off at 

2 
2 C 

0 
c = 

1-A 
(A154) 

This in fact corresponds to the sound speed calculated in the absence of 
the internal mode. This is most easily seen by considering equation 
(A147) in the limit of w e ~0. 

There are two basic questions to the theory as developed above. First, 
what is the effect of the presence of one source of absorption on the others? 
The second question which arises is to what extent are the relaxation equa- 
tions a true representation of the observed energy exchanges? Independent 
of these limitations, the calculated relaxation times considering each mode 
as independent is sufficient to determine whether a given mode is frozen 
out of the wave or not. 

The translational modes occupy a peculiar place in the theory of so nd 
dispersion because translational relaxation times are of the order of 10 -H sec. 
The translational mode therefore supports the ultrasonic wave. The par- 
ticipation of other modes depends upon how fast they exchange energy with 
translation (and with each other). 
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The classical absorption is sometimes referred to as the absorption due 
to translational relaxation. Thois is strictly true only for monatomic gas’es at 

. low temperatures (300° - 8000 K). In polyatomic gases the internal modes 
affect the classical absorption mainly through the thermodynamic coefficients 
which occur in a =, that is, the specific heats. The appropriate specific heats 
include those internal states which participate in the wave agd exclude those 
which are frozen out. Thus for oxygen and nitrogen at 1300 K the tabulated 
specific heats include a large fraction due to vibrational degrees of freedom, 
but only rotation and translation (a = 1. 40) could be included in calculations 
for 1 mc sound waves. A much smaller effect is due to the internal thermal 
conductivity which as Monchick (ref. 3) has recently shown is frozen out 
when the corresponding internal mode is frozen. 

As discussed earlier h may be written as the sum of a translational 
thermal conductivity h tr which represents the transport of kinetic energy and 
an internal thermal conductivity Xi which represents the transport of energy 
in an internal mode, say, rotation. The transport of energy in the internal 
mode occurs by a diffusion process. A molecule collides with its neighbor 
giving up its internal energy. The second molecule then passes this internal 
energy to its neighbor. Also, molecules diffuse through the gas taking their 
internal energy with them. Both processes together are described by the self- 
diffusion coefficient (ref. 20) in most cases. However, in polar gases 
where the exchange of internal energy is very efficient the diffusion of inter- 
nal energy will be larger than the self-diffusion coefficient. 

The exact expression for the internal thermal conductivity given by 
Monchick (ref. 3) is 

hi = 
PD ll’i 

m 
1 

1 - joTi 

5t 
tc 

TF7 
i 

2 
IT 

PDll 1 

1 

(A 155) 

where D - 
11 

the self-diffusion coefficient 

t N translational collision time 
C 

7 - 
j 

the relaxation time for the ith mode 

C. N 
1 

the heat capacity per particle 

k - Boltzman’ s constant 

PDll - 1.33 for many gases and a wide variety of temperatures. 
r7 and molecular potentials 
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1, 
I! 

When Ti> > t and oTi >> 1 as is t 
2 

e 
between 300Cand 1500°K with 0~10 

case for vibration in nitrogen and oxygen 
, hi vanishes. A more interesting case is 

when ‘Ti N t, and O7i << 1 such as is the case for rotational relaxation. The 
total thermal conductivity is then given by (3) 

A = Xtr t A. 
1 

(A156j 
When this expression is put into the equation for absorption (A66, A43) the un- 
knowns are r~ and Zrov Therefore, in principle only values of viscosity are 
necessary to obtain Zrot from ultrasonic absorption measurements. 

Ultrasonic absorption offers an important experimental check on the 
kinetic theory of polyatomic and polar gases and gas mixtures. Monchick, 
Periera and Mason (ref. 20) have developed expressions for the transport 
properties of such gases in which only the thermal conductivity, viscosity, 
diffusion coefficients and relaxation times occur. Ultrasonic measurement 
together with viscosity and thermal conductivity measured statically may be 
used to check the theoretical approximations. In addition, some of the quan: 
tities such as relaxation times and internal diffusion coefficients may be mea- 
sured in real working gases. 

A more interesting problem is the coupling between various internal 
modes. The extreme cases are, first, where several internal modes all ex- 
change energy with the translational energy but not with’each other. This 
is described (ref. 9) as parallel relaxation mechanisms. The second is 
where one of the internal modes exchanges energy with translation and any 
other internal modes are fed from the first internal mode. This is described 
as series excitation. These two cases have been formally developed (see 
Herzfeld and Litovitz). 

The case of parallel excitation is of importance in nitrogen between 6000 
and 8000°K and carbon dioxide between 300 and 2000°K. Vibration and rota- 
tion are both exchanging energy with translation but the relaxation times are 
separated by a factor of 100. Under these conditions each mode acts as though 
the other were absent (ref. 9).. 

Finally, the question arises as to how accurately the relaxation equation 
represents the relaxation process. When the energy exchange proceeds 
through many series and parallel relaxation times which are closely spaced 
the entire relaxation process may be accurately represented by a single re- 
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laxation time. Vibrational relaxation is of this type (ref. 9 and 22). It 
‘should be noted more recently the kinetic theory (ref. 19) has been applied 
to polyatomic gases and the relaxation equation related directly to the Boltz- 
man equation. 

EFFECTS AT HIGH TEMPERATURE 

Several additional loss mechanisms must be considered in order to ac- 
count for the sound absorption at temperatures at which ionization occurs. 
These are electron diffusion, excited electronic states, and radiation. The 
diffusion of electrons is different than the diffusion of neutrals because separa- 
tion of the electrons from the ions causes large microscopic fields which tend 
to oppose the electron diffusion. 

Let JB be the electrical current density expected from the diffusion co- 
efficients of free electrons in the sound wave and J the actual current density 
when the diffusion induced field conduction currents are also taken into ac- 
count. The induced field E due to the separation of electrons and ions causes 
a conduction current OE which reduces the actual current density such that 

J = JD - oE . (A157) 

When aE is comparable to Jl-,, the simple diffusion model described previously 
for monatomic gases is not applicable to the acoustic absorption process. 

The actual current may be expressed in terms of JD and the electrical 
conductivity by eliminating E using Poisson’ s equation and the conservation of 
charge. Assume that the ultrasonic wave causes a simple harmonic variation 
of charge density p, current density J, and induced field intensity E. The one- 
dimensional Poisson’ s equation is 

8E -= 
8X 

4TP e ’ 

The conservation of charge relation is 

(A 158) 

aP e 8J -= 
at -ax - 
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Using the simple harmonic variation of the independent variables in (A158) 
and (A159) we obtain 

and 

k J. 
‘e= w 

The relation between E and J becomes 

E = j%. 

(A161) 

(A162) 

The field strength may now be eliminated from the current equation (A157) to 
give 

J=J -j-J 
D w 

or 

J = 
JD 

4Tra l 

1 tj- 
6.’ 

(A 164) 

Equation(Al64)shows that the number of particles which actually move in 
the sound wave depends on the magnitude of $ . For gases like nitrogen and 
argon in the temperature range where the concentration of electrons are sig- 
nificant, 2 6 is typicafiy 10 . Therefore, the actual current density is only one 
millionth%f the current density predicted by the diffusion coefficient of elec- 
trons. 

Therefore, under the conditions of the present experiments the electric 
fields generated by charge separation are so large that diffusion of ion-elec- 
tron pairs is the mechanism which must be considered. This is usually re- 
ferred to as ambipolar diffusion (ref. 23). The diffusion of electron-ion 
pairs is governed by a diffusion coefficient which is twice the diffusion coeffi- 
cient of the ion (ref. 24) in the neutrals. The ion into neutral diffusion co- 
efficients are typically a tenth of the atom into molecule diffusion coefficients. 
If the simple diffusion theory described earlier, equation (A72), is used to 
evaluate a D due to ambipolar diffusion, then a D is about one tenth of the 
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acoustic diffusion losses due to atoms in molecules. This is 1% of the total 
absorption, and as such it is not significant. 

Excited electronic states become important at high temperatures. Elec- 
tronic state‘s enter in two ways. First, photo excitation and photo ionization 
may ‘cause excitation, and radiative decay completes the cycle. This case is 
included under radiation losses. The second case is excitation by collisions 
and return to the equilibrium state by radiative decay and/or collisional de- 
excitation. In this case the excited state acts like an internal mode and is 
governed by a relaxation equation such as equation (A78). Collisional excita- 
tion of electronic states has been extensively considered (ref. 25,26) in deter- 
mining local thermodynamic equilibrium in plasmas. Preliminary calculations 
of the relaxation times involved show that electron excitation is probably frozen 
out at megahertz ultrasonic frequencies. 

The choice of a term to represent the loss of power from the sound wave 
in the energy equation depends on many considerations. Radiative heat trans - 
fer in the presence of boundaries has been treated by Vincenti and Baldwin 
(ref. 27). Khosla and Murgai (ref. 28) investigated acoustic wave propagation 
in a radiating ionized gas in the presence of magnetic fields. Ryhming (ref. 33) 
studied radiation losses in a dissociating oxygen-like gas. Prokofiev (ref. 29, 
30) has made independent studies of the effect of radiation on small amplitude 
waves. 

A preliminary application to the high temperature argon data has been 
made of the simplest theory due to Stokes and modified by Smith (ref. 31). The 
basic assumption is that each element of fluid loses heat to the ambient gas 
according to Newton’ s law of cooling. The energy equation is 

C 
aT + po av 

vat -p ax 
t q Cv (T-To)= d (A 165) 

where q is a constant property of the gas and the ambient temperature To . 
It should be noted that the radiative term leads to optical absorption when 
TC To. This feature is necessary in order to keep the equation linear. The 
remaining equations, conservation of mass, momentum, and the equation of 
state are identical to equations (A87 , A86) and (A52). Applying the boundary 
conditions, equation (A30), the complex velocity is found to be 

0 C 0 2 v =Y 
1 t y jwT 

1 t -1 jwT 
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where T = 2 . 
q 

The velocity dispersion and absorption .may be obtained by 
separating real and imaginary parts as before 

1 
1 +.;;-W2T2 

-1 

1 t 02T2 1 
and 

1 c 
(7 1) 

a2 7 
a = - - 2 2 22 l 

C ltw ‘T 
0 

(A167) 

(A168) 

In the extreme case of the Kamers-Unsaid approximation the absorption from 
equation (A 165) is in good agreement with that measured in argon and nitrogen. 
Therefore, the radiation effect could cause sufficient losses to account for the 
experimental observations. 

The values of q are of the order of lo6 based on the measured ultra- 
sonic absorptions in nitrogen and argon in the present experiment. Under 
these conditions ti2’T2 - 10 so that velocity dispersion is no longer negligible. 
For the conditions cited 

C -“= 1 
C 

(A169) 
0 

that is, the sound speed is essentially isothermal. Further increases in radia- 
tion loss will cause no further velocity dispersion. Thus, the ultrasonic 
velocity is dependent only on the temperature and the average mass in this 
region. 

The problem now reduces to evaluating the coefficient q. Smith gives 
an expression for the coefficient of proportionality q in the radiative contribu- 
tion to the energy equation (A165), 

V 
0 

- (a/k)2 cot-’ (a/kj 1 Jib dv (A170) 
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where Jb is the Planck function and 

J' 
aJb 

= - 
b aT l 

(A.17 1) 

I, is the intensity of the radiation field in the. hot gas and a is the optical ab- 
sorption coefficient. The optical absorption coefficient and Iv are then calcu- 
lated as a function of v by considering the predominant mechanism for radia- 
tion, a = Iv/J 

b’ 

The temperature, pressure and species were such as to produce an op- 
tically thin gas radiating predominantly in the free-bound continuum. That is, 
the bulk of the radiation basically originates from transitions by free electrons 
to bound atomic states. The resulting Unsbld-Kramers radiation is charac- 
terized by a uniform intensity Iv with frequency up to a given frequency limit 
v o given as 

E. + 
1 

; kT 
V = 

0 h 

where Ei is the ionization potential and 
Planck’ s constant, respectively, Iv is 

64~r 3/2 
6 

I = 
V 3c m3e/2c3 

k and h are the Boltzman’ s and 
given by (ref. 32). 

z2 AE/kT 
N2 

effe 

(A172) 

(A.173) 

where N, is the electro concentration, 
of light, and Z2eff AEfiT 

m is the electron mass, c the velocity 
= e for the argon species encountered experimen- 

tally. The electron concentration is give’n by Saha’ s equation as 

2 
N = N 

e a 

3/2 -F/kT 

ge (A 174) 

where N, is the atomic species concentration and g is the ratio of internal 
partition functions of the ionic to atomic species taken here to be ~12 for the 
conditions experimentally encountered. 

Further analysis of the effects of radiation is in order. The various 
contributions to the absorption due to line radiation, collisional excitation, 
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and the various recombination radiation mechanisms should be considered 
further. However, the theories examined so far all show the possibility of 
measuring frequency averaged optical absorption coefficients. 
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